298 research outputs found

    The outcome of arthroscopic treatment of temporomandibular joint arthoropathy

    Get PDF
    The document attached has been archived with permission from the Australian Dental Association. An external link to the publisher’s copy is included.Ninety patients underwent arthroscopic temporomandibular joint surgery to 124 joints for arthropathy which had failed to respond to at least six months of non-surgical treatment. They were surveyed at between 6 months and 5 years (mean 2.5 years) after surgery and 63 per cent responded to the survey. They reported an 82 per cent improvement for pain (50 to 100 per cent better), 80 per cent for clicking and 82 per cent for locking. There was no morbidity following the treatment. Arthroscopic surgery sould be considered for advanced temporomandibular joint arthropathy which is refractory to non-surgical treatment.I. Rosenburg and A. N. Gos

    Attenuation Imaging with Pulse-Echo Ultrasound based on an Acoustic Reflector

    Full text link
    Ultrasound attenuation is caused by absorption and scattering in tissue and is thus a function of tissue composition, hence its imaging offers great potential for screening and differential diagnosis. In this paper we propose a novel method that allows to reconstruct spatial attenuation distribution in tissue based on computed tomography, using reflections from a passive acoustic reflector. This requires a standard ultrasound transducer operating in pulse-echo mode, thus it can be implemented on conventional ultrasound systems with minor modifications. We use calibration with water measurements in order to normalize measurements for quantitative imaging of attenuation. In contrast to earlier techniques, we herein show that attenuation reconstructions are possible without any geometric prior on the inclusion location or shape. We present a quantitative evaluation of reconstructions based on simulations, gelatin phantoms, and ex-vivo bovine skeletal muscle tissue, achieving contrast-to-noise ratio of up to 2.3 for an inclusion in ex-vivo tissue.Comment: Accepted at MICCAI 2019 (International Conference on Medical Image Computing and Computer Assisted Intervention

    Impact of chlororespiration on non-photochemical quenching of chlorophyll fluorescence and on the regulation of the diadinoxanthin cycle in the diatom Thalassiosira pseudonana

    Get PDF
    In diatoms, metabolic activity during long dark periods leads to a chlororespiratory electron flow, which is accompanied by the build-up of a proton gradient strong enough to activate the diadinoxanthin (Ddx) de-epoxidation reaction of the Ddx cycle. In the present study, the impact of chlororespiration on non-photochemical quenching (NPQ) of chlorophyll fluorescence and the regulation of the Ddx cycle in the diatom Thalassiosira pseudonana was investigated by manipulation of the redox state of the photosynthetic electron transport chain during darkness. The response of a transfer of T. pseudonana cells from growth light conditions to 60 min darkness was found to depend on oxygen: in its presence there was no significant reduction of the PQ pool and no de-epoxidation of Ddx to diatoxanthin (Dtx). Under anaerobic conditions a high reduction state of the electron transport chain and a slow but steady de-epoxidation of Ddx was observed, which resulted in a significant accumulation of Dtx after 60 min of anaerobiosis. Unexpectedly, this high concentration of Dtx did not induce a correspondingly high NPQ as it would have been observed with Dtx formed under high light conditions. However, the sensitivity of NPQ to Dtx in cells kept under dark anaerobic conditions increased during reoxygenation and far-red (FR) light illumination. The results are discussed with respect to the activation of the de-epoxidation reaction and the formation of NPQ and their dependence on the extent of the proton gradient across the thylakoid membrane

    Programmability of Chemical Reaction Networks

    Get PDF
    Motivated by the intriguing complexity of biochemical circuitry within individual cells we study Stochastic Chemical Reaction Networks (SCRNs), a formal model that considers a set of chemical reactions acting on a finite number of molecules in a well-stirred solution according to standard chemical kinetics equations. SCRNs have been widely used for describing naturally occurring (bio)chemical systems, and with the advent of synthetic biology they become a promising language for the design of artificial biochemical circuits. Our interest here is the computational power of SCRNs and how they relate to more conventional models of computation. We survey known connections and give new connections between SCRNs and Boolean Logic Circuits, Vector Addition Systems, Petri Nets, Gate Implementability, Primitive Recursive Functions, Register Machines, Fractran, and Turing Machines. A theme to these investigations is the thin line between decidable and undecidable questions about SCRN behavior

    Techniques for Arbuscular Mycorrhiza Inoculum Reduction

    Get PDF
    It is well established that arbuscular mycorrhizal (AM) fungi can play a significant role in sustainable crop production and environmental conservation. With the increasing awareness of the ecological significance of mycorrhizas and their diversity, research needs to be directed away from simple records of their occurrence or casual speculation of their function (Smith and Read 1997). Rather, the need is for empirical studies and investigations of the quantitative aspects of the distribution of different types and their contribution to the function of ecosystems. There is no such thing as a fungal effect or a plant effect, but there is an interaction between both symbionts. This results from the AM fungi and plant community size and structure, soil and climatic conditions, and the interplay between all these factors (Kahiluoto et al. 2000). Consequently, it is readily understood that it is the problems associated with methodology that limit our understanding of the functioning and effects of AM fungi within field communities. Given the ubiquous presence of AM fungi, a major constraint to the evaluation of the activity of AM colonisation has been the need to account for the indigenous soil native inoculum. This has to be controlled (i.e. reduced or eliminated) if we are to obtain a true control treatment for analysis of arbuscular mycorrhizas in natural substrates. There are various procedures possible for achieving such an objective, and the purpose of this chapter is to provide details of a number of techniques and present some evaluation of their advantages and disadvantages. Although there have been a large number of experiments to investigated the effectiveness of different sterilization procedures for reducing pathogenic soil fungi, little information is available on their impact on beneficial organisms such as AM fungi. Furthermore, some of the techniques have been shown to affect physical and chemical soil characteristics as well as eliminate soil microorganisms that can interfere with the development of mycorrhizas, and this creates difficulties in the interpretation of results simply in terms of possible mycorrhizal activity. An important subject is the differentiation of methods that involve sterilization from those focussed on indigenous inoculum reduction. Soil sterilization aims to destroy or eliminate microbial cells while maintaining the existing chemical and physical characteristics of the soil (Wolf and Skipper 1994). Consequently, it is often used for experiments focussed on specific AM fungi, or to establish a negative control in some other types of study. In contrast, the purpose of inoculum reduction techniques is to create a perturbation that will interfere with mycorrhizal formation, although not necessarily eliminating any component group within the inoculum. Such an approach allows the establishment of different degrees of mycorrhizal formation between treatments and the study of relative effects. Frequently the basic techniques used to achieve complete sterilization or just an inoculum reduction may be similar but the desired outcome is accomplished by adjustments of the dosage or intensity of the treatment. The ultimate choice of methodology for establishing an adequate non-mycorrhizal control depends on the design of the particular experiments, the facilities available and the amount of soil requiring treatment

    A p53-regulated apoptotic gene signature predicts treatment response and outcome in pediatric acute lymphoblastic leukemia

    Get PDF
    Russell O Bainer,1 Matthew R Trendowski,2 Cheng Cheng,3 Deqing Pei,3 Wenjian Yang,3 Steven W Paugh,4 Kathleen H Goss,5 Andrew D Skol,6 Paul Pavlidis,7 Ching-Hon Pui,4,8 T Conrad Gilliam,1 William E Evans,4,9,* Kenan Onel10–13,* 1Department of Human Genetics, 2Department of Medicine, Section of Hematology/Oncology, The University of Chicago, Chicago, IL, 3Department of Biostatistics, 4Hematological Malignancy Program, St Jude Children’s Research Hospital, Memphis, TN, 5University of Chicago Medicine Comprehensive Cancer Center, 6Department of Pediatrics, The University of Chicago, Chicago, IL, USA; 7Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada; 8Department of Oncology, 9Department of Pharmaceutical Sciences, St Jude Children’s Research Hospital, Memphis, TN, 10Division of Human Genetics and Genomics, 11Division of Hematology/Oncology and Stem Cell Transplantation, Cohen Children’s Medical Center, New Hyde Park, 12The Feinstein Institute for Medical Research, Manhasset, NY, 13Hofstra Northwell School of Medicine, Hofstra University, Hempstead, NY, USA *These authors contributed equally to this work Abstract: Gene signatures have been associated with outcome in pediatric acute lymphoblastic leukemia (ALL) and other malignancies. However, determining the molecular drivers of these expression changes remains challenging. In ALL blasts, the p53 tumor suppressor is the primary regulator of the apoptotic response to genotoxic chemotherapy, which is predictive of outcome. Consequently, we hypothesized that the normal p53-regulated apoptotic response to DNA damage would be altered in ALL and that this alteration would influence drug response and treatment outcome. To test this, we first used global expression profiling in related human B-lineage lymphoblastoid cell lines with either wild type or mutant TP53 to characterize the normal p53-mediated transcriptional response to ionizing radiation (IR) and identified 747 p53-regulated apoptotic target genes. We then sorted these genes into six temporal expression clusters (TECs) based upon differences over time in their IR-induced p53-regulated gene expression patterns, and found that one cluster (TEC1) was associated with multidrug resistance in leukemic blasts in one cohort of children with ALL and was an independent predictor of survival in two others. Therefore, by investigating p53-mediated apoptosis in vitro, we identified a gene signature significantly associated with drug resistance and treatment outcome in ALL. These results suggest that intersecting pathway-derived and clinically derived expression data may be a powerful method to discover driver gene signatures with functional and clinical implications in pediatric ALL and perhaps other cancers as well. Keywords: pediatric acute lymphoblastic leukemia, p53, gene expression signature, outcomes analysi

    How about your peers? Cystic fibrosis questionnaire data from healthy children and adolescents

    Get PDF
    Contains fulltext : 97967.pdf (publisher's version ) (Open Access)BACKGROUND: The Cystic Fibrosis Questionnaire (CFQ) is widely used in research as an instrument to measure quality of life in patients with cystic fibrosis (CF). In routine patient care however, measuring quality of life is still not implemented in guidelines. One of the reasons might be the lack of consensus on how to interpret CFQ scores of an individual patient, because appropriate reference data are lacking. The question which scores reflect normal functioning and which scores reflect clinically relevant problems is still unanswered. Moreover, there is no knowledge about how healthy children and adolescents report on their quality of life (on the CFQ). With regard to quality of life the effect of normal development should be taken into account, especially in childhood and adolescence. Therefore, it is important to gain more knowledge about how healthy children and adolescents report on their quality of life and if there are any difference in a healthy populations based on age or gender. Without these data we cannot adequately interpret the CFQ as a tool in clinical care to provide patient-tailored care. Therefore this study collected data of the CFQ in healthy children and adolescents with the aim to refer health status of CF youngsters to that of healthy peers. METHODS: The CFQ was completed by 478 healthy Dutch children and adolescents (aged 6-20) in a cross-sectional study. RESULTS: The majority of healthy children (over 65%) did not reach maximum scores on most domains of the CFQ. Median CFQ-scores of healthy children and adolescents ranged from 67 to 100 (on a scale of 0-100) on the different CFQ-domains. Significant differences in quality of life exist among healthy children and adolescents, and these depend on age and gender. CONCLUSIONS: Reference data of quality of life scores from a healthy population are essential for adequate interpretation of quality of life in young patients with CF. Clinicians should be aware that the perception of health-related quality of life is not as disease-specific as one might think and also relies on factors such as age, normal maturation and gender

    Radio emission from Supernova Remnants

    Get PDF
    The explosion of a supernova releases almost instantaneously about 10^51 ergs of mechanic energy, changing irreversibly the physical and chemical properties of large regions in the galaxies. The stellar ejecta, the nebula resulting from the powerful shock waves, and sometimes a compact stellar remnant, constitute a supernova remnant (SNR). They can radiate their energy across the whole electromagnetic spectrum, but the great majority are radio sources. Almost 70 years after the first detection of radio emission coming from a SNR, great progress has been achieved in the comprehension of their physical characteristics and evolution. We review the present knowledge of different aspects of radio remnants, focusing on sources of the Milky Way and the Magellanic Clouds, where the SNRs can be spatially resolved. We present a brief overview of theoretical background, analyze morphology and polarization properties, and review and critical discuss different methods applied to determine the radio spectrum and distances. The consequences of the interaction between the SNR shocks and the surrounding medium are examined, including the question of whether SNRs can trigger the formation of new stars. Cases of multispectral comparison are presented. A section is devoted to reviewing recent results of radio SNRs in the Magellanic Clouds, with particular emphasis on the radio properties of SN 1987A, an ideal laboratory to investigate dynamical evolution of an SNR in near real time. The review concludes with a summary of issues on radio SNRs that deserve further study, and analyzing the prospects for future research with the latest generation radio telescopes.Comment: Revised version. 48 pages, 15 figure
    corecore