435 research outputs found

    Developmental changes in the role of different metalinguistic awareness skills in Chinese reading acquisition from preschool to third grade

    Get PDF
    Copyright @ 2014 Wei et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.The present study investigated the relationship between Chinese reading skills and metalinguistic awareness skills such as phonological, morphological, and orthographic awareness for 101 Preschool, 94 Grade-1, 98 Grade-2, and 98 Grade-3 children from two primary schools in Mainland China. The aim of the study was to examine how each of these metalinguistic awareness skills would exert their influence on the success of reading in Chinese with age. The results showed that all three metalinguistic awareness skills significantly predicted reading success. It further revealed that orthographic awareness played a dominant role in the early stages of reading acquisition, and its influence decreased with age, while the opposite was true for the contribution of morphological awareness. The results were in stark contrast with studies in English, where phonological awareness is typically shown as the single most potent metalinguistic awareness factor in literacy acquisition. In order to account for the current data, a three-stage model of reading acquisition in Chinese is discussed.National Natural Science Foundation of China and Knowledge Innovation Program of the Chinese Academy of Sciences

    A Triple Protostar System Formed via Fragmentation of a Gravitationally Unstable Disk

    Get PDF
    Binary and multiple star systems are a frequent outcome of the star formation process, and as a result, almost half of all sun-like stars have at least one companion star. Theoretical studies indicate that there are two main pathways that can operate concurrently to form binary/multiple star systems: large scale fragmentation of turbulent gas cores and filaments or smaller scale fragmentation of a massive protostellar disk due to gravitational instability. Observational evidence for turbulent fragmentation on scales of >>1000~AU has recently emerged. Previous evidence for disk fragmentation was limited to inferences based on the separations of more-evolved pre-main sequence and protostellar multiple systems. The triple protostar system L1448 IRS3B is an ideal candidate to search for evidence of disk fragmentation. L1448 IRS3B is in an early phase of the star formation process, likely less than 150,000 years in age, and all protostars in the system are separated by <<200~AU. Here we report observations of dust and molecular gas emission that reveal a disk with spiral structure surrounding the three protostars. Two protostars near the center of the disk are separated by 61 AU, and a tertiary protostar is coincident with a spiral arm in the outer disk at a 183 AU separation. The inferred mass of the central pair of protostellar objects is \sim1 Msun_{sun}, while the disk surrounding the three protostars has a total mass of \sim0.30 M_{\sun}. The tertiary protostar itself has a minimum mass of \sim0.085 Msun_{sun}. We demonstrate that the disk around L1448 IRS3B appears susceptible to disk fragmentation at radii between 150~AU and 320~AU, overlapping with the location of the tertiary protostar. This is consistent with models for a protostellar disk that has recently undergone gravitational instability, spawning one or two companion stars.Comment: Published in Nature on Oct. 27th. 24 pages, 8 figure

    SCUBA-2 Ultra Deep Imaging EAO Survey (STUDIES). IV. Spatial Clustering and Halo Masses of Submillimeter Galaxies

    Get PDF
    We analyze an extremely deep 450 μm image (1σ = 0.56 mJy beam−1) of a sime300 arcmin2 area in the CANDELS/COSMOS field as part of the Sub-millimeter Common User Bolometric Array-2 Ultra Deep Imaging EAO Survey. We select a robust (signal-to-noise ratio ≥4) and flux-limited (≥4 mJy) sample of 164 submillimeter galaxies (SMGs) at 450 μm that have K-band counterparts in the COSMOS2015 catalog identified from radio or mid-infrared imaging. Utilizing this SMG sample and the 4705 K-band-selected non-SMGs that reside within the noise level ≤1 mJy beam−1 region of the 450 μm image as a training set, we develop a machine-learning classifier using K-band magnitude and color–color pairs based on the 13-band photometry available in this field. We apply the trained machine-learning classifier to the wider COSMOS field (1.6 deg2) using the same COSMOS2015 catalog and identify a sample of 6182 SMG candidates with similar colors. The number density, radio and/or mid-infrared detection rates, redshift and stellar-mass distributions, and the stacked 450 μm fluxes of these SMG candidates, from the S2COSMOS observations of the wide field, agree with the measurements made in the much smaller CANDELS field, supporting the effectiveness of the classifier. Using this SMG candidate sample, we measure the two-point autocorrelation functions from z = 3 down to z = 0.5. We find that the SMG candidates reside in halos with masses of sime(2.0 ± 0.5) × 1013 h −1 M ☉ across this redshift range. We do not find evidence of downsizing that has been suggested by other recent observational studies

    Cognitive skills and literacy performance of Chinese adolescents with and without dyslexia

    Get PDF
    The present study sought to identify cognitive abilities that might distinguish Hong Kong Chinese adolescents with dyslexia and to assess how these abilities were associated with Chinese word reading, word dictation, and reading comprehension. The cognitive skills of interest were morphological awareness, visual-orthographic knowledge, rapid naming, and verbal working memory. A total of 90 junior secondary school students, 30 dyslexic, 30 chronological age controls, and 30 reading level controls was tested on a range of cognitive and literacy tasks. Dyslexic students were less competent than the control students in all cognitive and literacy measures. The regression analyses also showed that verbal working memory, rapid naming, morphological awareness, and visual-orthographic knowledge were significantly associated with literacy performance. Findings underscore the importance of these cognitive skills for Chinese literacy acquisition. Overall, this study highlights the persistent difficulties of Chinese dyslexic adolescents who seem to have multiple causes for reading and spelling difficulties

    Planetary population synthesis

    Full text link
    In stellar astrophysics, the technique of population synthesis has been successfully used for several decades. For planets, it is in contrast still a young method which only became important in recent years because of the rapid increase of the number of known extrasolar planets, and the associated growth of statistical observational constraints. With planetary population synthesis, the theory of planet formation and evolution can be put to the test against these constraints. In this review of planetary population synthesis, we first briefly list key observational constraints. Then, the work flow in the method and its two main components are presented, namely global end-to-end models that predict planetary system properties directly from protoplanetary disk properties and probability distributions for these initial conditions. An overview of various population synthesis models in the literature is given. The sub-models for the physical processes considered in global models are described: the evolution of the protoplanetary disk, the planets' accretion of solids and gas, orbital migration, and N-body interactions among concurrently growing protoplanets. Next, typical population synthesis results are illustrated in the form of new syntheses obtained with the latest generation of the Bern model. Planetary formation tracks, the distribution of planets in the mass-distance and radius-distance plane, the planetary mass function, and the distributions of planetary radii, semimajor axes, and luminosities are shown, linked to underlying physical processes, and compared with their observational counterparts. We finish by highlighting the most important predictions made by population synthesis models and discuss the lessons learned from these predictions - both those later observationally confirmed and those rejected.Comment: 47 pages, 12 figures. Invited review accepted for publication in the 'Handbook of Exoplanets', planet formation section, section editor: Ralph Pudritz, Springer reference works, Juan Antonio Belmonte and Hans Deeg, Ed

    Multiple volcanic episodes of flood basalts caused by thermochemical mantle plumes

    Full text link
    The hypothesis that a single mushroom-like mantle plume head can generate a large igneous province within a few million years has been widely accepted(1). The Siberian Traps at the Permian Triassic boundary(2) and the Deccan Traps at the Cretaceous Tertiary boundary(3) were probably erupted within one million years. These large eruptions have been linked to mass extinctions. But recent geochronological data(4-11) reveal more than one pulse of major eruptions with diverse magma flux within several flood basalts extending over tens of million years. This observation indicates that the processes leading to large igneous provinces are more complicated than the purely thermal, single-stage plume model suggests. Here we present numerical experiments to demonstrate that the entrainment of a dense eclogite-derived material at the base of the mantle by thermal plumes can develop secondary instabilities due to the interaction between thermal and compositional buoyancy forces. The characteristic timescales of the development of the secondary instabilities and the variation of the plume strength are compatible with the observations. Such a process may contribute to multiple episodes of large igneous provinces.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/62705/1/nature03697.pd

    The Formation of the First Massive Black Holes

    Full text link
    Supermassive black holes (SMBHs) are common in local galactic nuclei, and SMBHs as massive as several billion solar masses already exist at redshift z=6. These earliest SMBHs may grow by the combination of radiation-pressure-limited accretion and mergers of stellar-mass seed BHs, left behind by the first generation of metal-free stars, or may be formed by more rapid direct collapse of gas in rare special environments where dense gas can accumulate without first fragmenting into stars. This chapter offers a review of these two competing scenarios, as well as some more exotic alternative ideas. It also briefly discusses how the different models may be distinguished in the future by observations with JWST, (e)LISA and other instruments.Comment: 47 pages with 306 references; this review is a chapter in "The First Galaxies - Theoretical Predictions and Observational Clues", Springer Astrophysics and Space Science Library, Eds. T. Wiklind, V. Bromm & B. Mobasher, in pres

    Axons Amplify Somatic Incomplete Spikes into Uniform Amplitudes in Mouse Cortical Pyramidal Neurons

    Get PDF
    BACKGROUND: Action potentials are the essential unit of neuronal encoding. Somatic sequential spikes in the central nervous system appear various in amplitudes. To be effective neuronal codes, these spikes should be propagated to axonal terminals where they activate the synapses and drive postsynaptic neurons. It remains unclear whether these effective neuronal codes are based on spike timing orders and/or amplitudes. METHODOLOGY/PRINCIPAL FINDINGS: We investigated this fundamental issue by simultaneously recording the axon versus soma of identical neurons and presynaptic vs. postsynaptic neurons in the cortical slices. The axons enable somatic spikes in low amplitude be enlarged, which activate synaptic transmission in consistent patterns. This facilitation in the propagation of sequential spikes through the axons is mechanistically founded by the short refractory periods, large currents and high opening probability of axonal voltage-gated sodium channels. CONCLUSION/SIGNIFICANCE: An amplification of somatic incomplete spikes into axonal complete ones makes sequential spikes to activate consistent synaptic transmission. Therefore, neuronal encoding is likely based on spike timing order, instead of graded analogues

    Circumstellar disks and planets. Science cases for next-generation optical/infrared long-baseline interferometers

    Full text link
    We present a review of the interplay between the evolution of circumstellar disks and the formation of planets, both from the perspective of theoretical models and dedicated observations. Based on this, we identify and discuss fundamental questions concerning the formation and evolution of circumstellar disks and planets which can be addressed in the near future with optical and infrared long-baseline interferometers. Furthermore, the importance of complementary observations with long-baseline (sub)millimeter interferometers and high-sensitivity infrared observatories is outlined.Comment: 83 pages; Accepted for publication in "Astronomy and Astrophysics Review"; The final publication is available at http://www.springerlink.co
    corecore