214 research outputs found
The Proteasomal Deubiquitinating Enzyme PSMD14 Regulates Macroautophagy by Controlling Golgi-to-ER Retrograde Transport
Ubiquitination regulates several biological processes, however the role of specific members of the ubiquitinome on intracellular membrane trafficking is not yet fully understood. Here, we search for ubiquitin-related genes implicated in protein membrane trafficking performing a High-Content siRNA Screening including 1187 genes of the human “ubiquitinome” using amyloid precursor protein (APP) as a reporter. We identified the deubiquitinating enzyme PSMD14, a subunit of the 19S regulatory particle of the proteasome, specific for K63-Ub chains in cells, as a novel regulator of Golgi-to-endoplasmic reticulum (ER) retrograde transport. Silencing or pharmacological inhibition of PSMD14 with Capzimin (CZM) caused a robust increase in APP levels at the Golgi apparatus and the swelling of this organelle. We showed that this phenotype is the result of rapid inhibition of Golgi-to-ER retrograde transport, a pathway implicated in the early steps of the autophagosomal formation. Indeed, we observed that inhibition of PSMD14 with CZM acts as a potent blocker of macroautophagy by a mechanism related to the retention of Atg9A and Rab1A at the Golgi apparatus. As pharmacological inhibition of the proteolytic core of the 20S proteasome did not recapitulate these effects, we concluded that PSMD14, and the K63-Ub chains, act as a crucial regulatory factor for macroautophagy by controlling Golgi-to-ER retrograde transport
Multi-Receiver Quantum Dense Coding with Non-Symmetric Quantum Channel
A two-receiver quantum dense coding scheme and an -receiver quantum dense
coding scheme, in the case of non-symmetric Hilbert spaces of the particles of
the quantum channel, are investigated in this paper. A sender can send his
messages to many receivers simultaneously. The scheme can be applied to quantum
secret sharing and controlled quantum dense coding.Comment: To appear in Journal of the Korean Physical Societ
Assessment of interatomic potentials for atomistic analysis of static and dynamic properties of screw dislocations in W
Screw dislocations in bcc metals display non-planar cores at zero temperature
which result in high lattice friction and thermally activated strain rate
behavior. In bcc W, electronic structure molecular statics calculations reveal
a compact, non-degenerate core with an associated Peierls stress between 1.7
and 2.8 GPa. However, a full picture of the dynamic behavior of dislocations
can only be gained by using more efficient atomistic simulations based on
semiempirical interatomic potentials. In this paper we assess the suitability
of five different potentials in terms of static properties relevant to screw
dislocations in pure W. As well, we perform molecular dynamics simulations of
stress-assisted glide using all five potentials to study the dynamic behavior
of screw dislocations under shear stress. Dislocations are seen to display
thermally-activated motion in most of the applied stress range, with a gradual
transition to a viscous damping regime at high stresses. We find that one
potential predicts a core transformation from compact to dissociated at finite
temperature that affects the energetics of kink-pair production and impacts the
mechanism of motion. We conclude that a modified embedded-atom potential
achieves the best compromise in terms of static and dynamic screw dislocation
properties, although at an expense of about ten-fold compared to central
potentials
The states of W-class as shared resources for perfect teleportation and superdense coding
As we know, the states of triqubit systems have two important classes:
GHZ-class and W-class.
In this paper, the states of W-class are considered for teleportation and
superdense coding, and are generalized to multi-particle systems. First we
describe two transformations of the shared resources for teleportation and
superdense coding, which allow many new protocols from some known ones for
that. As an application of these transformations, we obtain a sufficient and
necessary condition for a state of W-class being suitable for perfect
teleportation and superdense coding. As another application, we find that state
can be used to
transmit three classical bits by sending two qubits, which was considered to be
impossible by P. Agrawal and A. Pati [Phys. Rev. A to be published]. We
generalize the states of W-class to multi-qubit systems and multi-particle
systems with higher dimension. We propose two protocols for teleportation and
superdense coding by using W-states of multi-qubit systems that generalize the
protocols by using proposed by P. Agrawal and A. Pati. We obtain an
optimal way to partition some W-states of multi-qubit systems into two
subsystems, such that the entanglement between them achieves maximum value.Comment: 10 pages, critical comments and suggestions are welcom
Analyzing three-player quantum games in an EPR type setup
We use the formalism of Clifford Geometric Algebra (GA) to develop an
analysis of quantum versions of three-player non-cooperative games. The quantum
games we explore are played in an Einstein-Podolsky-Rosen (EPR) type setting.
In this setting, the players' strategy sets remain identical to the ones in the
mixed-strategy version of the classical game that is obtained as a proper
subset of the corresponding quantum game. Using GA we investigate the outcome
of a realization of the game by players sharing GHZ state, W state, and a
mixture of GHZ and W states. As a specific example, we study the game of
three-player Prisoners' Dilemma.Comment: 21 pages, 3 figure
Analysis of two-player quantum games in an EPR setting using geometric algebra
The framework for playing quantum games in an Einstein-Podolsky-Rosen (EPR)
type setting is investigated using the mathematical formalism of Clifford
geometric algebra (GA). In this setting, the players' strategy sets remain
identical to the ones in the classical mixed-strategy version of the game,
which is then obtained as proper subset of the corresponding quantum game. As
examples, using GA we analyze the games of Prisoners' Dilemma and Stag Hunt
when played in the EPR type setting.Comment: 20 pages, no figure, revise
N-player quantum games in an EPR setting
The -player quantum game is analyzed in the context of an
Einstein-Podolsky-Rosen (EPR) experiment. In this setting, a player's
strategies are not unitary transformations as in alternate quantum
game-theoretic frameworks, but a classical choice between two directions along
which spin or polarization measurements are made. The players' strategies thus
remain identical to their strategies in the mixed-strategy version of the
classical game. In the EPR setting the quantum game reduces itself to the
corresponding classical game when the shared quantum state reaches zero
entanglement. We find the relations for the probability distribution for
-qubit GHZ and W-type states, subject to general measurement directions,
from which the expressions for the mixed Nash equilibrium and the payoffs are
determined. Players' payoffs are then defined with linear functions so that
common two-player games can be easily extended to the -player case and
permit analytic expressions for the Nash equilibrium. As a specific example, we
solve the Prisoners' Dilemma game for general . We find a new
property for the game that for an even number of players the payoffs at the
Nash equilibrium are equal, whereas for an odd number of players the
cooperating players receive higher payoffs.Comment: 26 pages, 2 figure
Excluded volume induces buckling in optically driven colloidal rings
In our combined experimental, theoretical, and numerical work, we study the out-of-equilibrium deformations in a shrinking ring of optically trapped, interacting colloidal particles. Steerable optical tweezers are used to confine dielectric microparticles along a circle of discrete harmonic potential wells, and to reduce the ring radius at a controlled quench speed. We show that excluded-volume interactions are enough to induce particle sliding from their equilibrium positions and nonequilibrium zigzag roughening of the colloidal structure. Our work unveils the underlying mechanism of interfacial deformation in radially driven microscopic discrete rings
- …
