5 research outputs found

    Heart failure in COVID-19: the multicentre, multinational PCHF-COVICAV registry.

    Get PDF
    AIMS: We assessed the outcome of hospitalized coronavirus disease 2019 (COVID-19) patients with heart failure (HF) compared with patients with other cardiovascular disease and/or risk factors (arterial hypertension, diabetes, or dyslipidaemia). We further wanted to determine the incidence of HF events and its consequences in these patient populations. METHODS AND RESULTS: International retrospective Postgraduate Course in Heart Failure registry for patients hospitalized with COVID-19 and CArdioVascular disease and/or risk factors (arterial hypertension, diabetes, or dyslipidaemia) was performed in 28 centres from 15 countries (PCHF-COVICAV). The primary endpoint was in-hospital mortality. Of 1974 patients hospitalized with COVID-19, 1282 had cardiovascular disease and/or risk factors (median age: 72 [interquartile range: 62-81] years, 58% male), with HF being present in 256 [20%] patients. Overall in-hospital mortality was 25% (n = 323/1282 deaths). In-hospital mortality was higher in patients with a history of HF (36%, n = 92) compared with non-HF patients (23%, n = 231, odds ratio [OR] 1.93 [95% confidence interval: 1.44-2.59], P < 0.001). After adjusting, HF remained associated with in-hospital mortality (OR 1.45 [95% confidence interval: 1.01-2.06], P = 0.041). Importantly, 186 of 1282 [15%] patients had an acute HF event during hospitalization (76 [40%] with de novo HF), which was associated with higher in-hospital mortality (89 [48%] vs. 220 [23%]) than in patients without HF event (OR 3.10 [2.24-4.29], P < 0.001). CONCLUSIONS: Hospitalized COVID-19 patients with HF are at increased risk for in-hospital death. In-hospital worsening of HF or acute HF de novo are common and associated with a further increase in in-hospital mortality

    A Test for Pre-Adapted Phenotypic Plasticity in the Invasive Tree Acer negundo L.

    Get PDF
    Phenotypic plasticity is a key mechanism associated with the spread of exotic plants and previous studies have found that invasive species are generally more plastic than co-occurring species. Comparatively, the evolution of phenotypic plasticity in plant invasion has received less attention, and in particular, the genetic basis of plasticity is largely unexamined. Native from North America, Acer negundo L. is aggressively impacting the riparian forests of southern and eastern Europe thanks to higher plasticity relative to co-occurring native species. We therefore tested here whether invasive populations have evolved increased plasticity since introduction. The performance of 1152 seedlings from 8 native and 8 invasive populations was compared in response to nutrient availability. Irrespective of nutrients, invasive populations had higher growth and greater allocation to above-ground biomass relative to their native conspecifics. More importantly, invasive genotypes did not show increased plasticity in any of the 20 traits examined. This result suggests that the high magnitude of plasticity to nutrient variation of invasive seedlings might be pre-adapted in the native range. Invasiveness of A. negundo could be explained by higher mean values of traits due to genetic differentiation rather than by evolution of increased plasticity.We thank Maurice Aulen and Mathieu Reveillas for their assistance with seed collection as well as Yann Guengant for his assistance with growth measurements. We are also grateful to Jean-Baptiste Lamy for his advice on statistical analyses and to the INRA experimental unit of Cestas-Pierroton, in particular Frederic Bernier and Henri Bignalet, for their logistical support. Publication was made possible by the York University Libraries' Open Access Author Fund
    corecore