895 research outputs found

    DNA-Driven Dynamic Assembly of MoS2 Nanosheets

    Get PDF
    Controlling the assembly of molybdenum disulfide (MoS2) layers into static and dynamic superstructures can impact on their use in optoelectronics, energy, and drug delivery. Toward this goal, we present a strategy to drive the assembly of MoS2 layers via the hybridization of complementary DNA linkers. By functionalizing the MoS2 surface with thiolated DNA, MoS2 nanosheets were assembled into mulitlayered superstructures, and the complementary DNA strands were used as linkers. A disassembly process was triggered by the formation of an intramolecular i-motif structure at a cystosine-rich sequence in the DNA linker at acidic pH values. We tested the versatility of our approach by driving the disassembly of the MoS2 superstructures through a different DNA-based mechanism, namely strand displacement. This study demonstrates how DNA can be employed to drive the static and dynamic assembly of MoS2 nanosheets in aqueous solution

    DNA-Powered Stimuli-Responsive Single-Walled Carbon Nanotube Junctions

    Get PDF
    Reconfigurable stimuli-responsive molecular materials play an important role in the fabrication of nanoscale systems and devices. Here, we report a bottom-up strategy for the reversible assembly of single-walled carbon nanotube linear junctions in solution. The assembly/disassembly of the nanotubes can be controlled via the intrinsic responsiveness to different stimuli of sequence-specific deoxyribonucleic acid linkers forming the junctions

    Minority and mode conversion heating in (3He)-H JET plasma

    Get PDF
    Radio frequency (RF) heating experiments have recently been conducted in JET (He-3)-H plasmas. This type of plasmas will be used in ITER's non-activated operation phase. Whereas a companion paper in this same PPCF issue will discuss the RF heating scenario's at half the nominal magnetic field, this paper documents the heating performance in (He-3)-H plasmas at full field, with fundamental cyclotron heating of He-3 as the only possible ion heating scheme in view of the foreseen ITER antenna frequency bandwidth. Dominant electron heating with global heating efficiencies between 30% and 70% depending on the He-3 concentration were observed and mode conversion (MC) heating proved to be as efficient as He-3 minority heating. The unwanted presence of both He-4 and D in the discharges gave rise to 2 MC layers rather than a single one. This together with the fact that the location of the high-field side fast wave (FW) cutoff is a sensitive function of the parallel wave number and that one of the locations of the wave confluences critically depends on the He-3 concentration made the interpretation of the results, although more complex, very interesting: three regimes could be distinguished as a function of X[He-3]: (i) a regime at low concentration (X[He-3] < 1.8%) at which ion cyclotron resonance frequency (ICRF) heating is efficient, (ii) a regime at intermediate concentrations (1.8 < X[He-3] < 5%) in which the RF performance is degrading and ultimately becoming very poor, and finally (iii) a good heating regime at He-3 concentrations beyond 6%. In this latter regime, the heating efficiency did not critically depend on the actual concentration while at lower concentrations (X[He-3] < 4%) a bigger excursion in heating efficiency is observed and the estimates differ somewhat from shot to shot, also depending on whether local or global signals are chosen for the analysis. The different dynamics at the various concentrations can be traced back to the presence of 2 MC layers and their associated FW cutoffs residing inside the plasma at low He-3 concentration. One of these layers is approaching and crossing the low-field side plasma edge when 1.8 < X[He-3] < 5%. Adopting a minimization procedure to correlate the MC positions with the plasma composition reveals that the different behaviors observed are due to contamination of the plasma. Wave modeling not only supports this interpretation but also shows that moderate concentrations of D-like species significantly alter the overall wave behavior in He-3-H plasmas. Whereas numerical modeling yields quantitative information on the heating efficiency, analytical work gives a good description of the dominant underlying wave interaction physics

    Tuning the Coupling in Single-Molecule Heterostructures: DNA-Programmed and Reconfigurable Carbon Nanotube-Based Nanohybrids

    Get PDF
    Herein a strategy is presented for the assembly of both static and stimuli‐responsive single‐molecule heterostructures, where the distance and electronic coupling between an individual functional nanomoiety and a carbon nanostructure are tuned via the use of DNA linkers. As proof of concept, the formation of 1:1 nanohybrids is controlled, where single quantum dots (QDs) are tethered to the ends of individual carbon nanotubes (CNTs) in solution with DNA interconnects of different lengths. Photoluminescence investigations—both in solution and at the single‐hybrid level—demonstrate the electronic coupling between the two nanostructures; notably this is observed to progressively scale, with charge transfer becoming the dominant process as the linkers length is reduced. Additionally, stimuli‐responsive CNT‐QD nanohybrids are assembled, where the distance and hence the electronic coupling between an individual CNT and a single QD are dynamically modulated via the addition and removal of potassium (K+) cations; the system is further found to be sensitive to K+ concentrations from 1 pM to 25 × 10−3m. The level of control demonstrated here in modulating the electronic coupling of reconfigurable single‐molecule heterostructures, comprising an individual functional nanomoiety and a carbon nanoelectrode, is of importance for the development of tunable molecular optoelectronic systems and devices

    First observations of confined fast ions in MAST Upgrade with an upgraded neutron camera

    Get PDF
    Spherical tokamaks are key to the successful design of operating scenarios of future fusion reactors in the areas of divertor physics, neutral beam current drive and fast ion physics. MAST Upgrade, which has successfully concluded its first experimental campaign, was specifically designed to address the role of the radial gradient of the fast ion distribution in driving the excitation of magneto-hydrodynamic (MHD) instabilities, such as toroidal Alfvén eigenmodes, fish-bones and long-lived mode, thanks to its two tangential neutral beam injection systems, one on the equatorial plane and one that is vertically shifted 65 cm above the equatorial plane. To study the fast ion dynamics in the presence of such instabilities, as well as of sawteeth and neo-classical tearing modes, several fast ion diagnostics were upgraded and new ones added. Among them, the MAST prototype neutron camera (NC) has been upgraded to six, equatorial sight-lines. The first observations of the confined fast ion behavior with the upgraded NC in a wide range of plasma scenarios characterized by on-axis and/or off-axis heating and different MHD instabilities are presented here. The observations presented in this study confirm previous results on MAST but with a higher level of detail and highlight new physics observations unique to the MAST Upgrade. The results presented here confirm the improved performance of the NC Upgrade, which thus becomes one of the key elements, in combination with the rich set of fast ion diagnostics available on the MAST Upgrade, for a more constrained modeling of the fast ion dynamics in fusion reactor relevant scenarios
    corecore