3,367 research outputs found

    Near-arcsecond resolution observations of the hot corino of the solar type protostar IRAS 16293-2422

    Get PDF
    Complex organic molecules have previously been discovered in solar type protostars, raising the questions of where and how they form in the envelope. Possible formation mechanisms include grain mantle evaporation, interaction of the outflow with its surroundings or the impact of UV/X-rays inside the cavities. In this Letter we present the first interferometric observations of two complex molecules, CH3CN and HCOOCH3, towards the solar type protostar IRAS16293-2422. The images show that the emission originates from two compact regions centered on the two components of the binary system. We discuss how these results favor the grain mantle evaporation scenario and we investigate the implications of these observations for the chemical composition and physical and dynamical state of the two components.Comment: 5 pages (apjemulate), 2 figures; accepted by ApJ

    The HIFI spectral survey of AFGL 2591 (CHESS). II. Summary of the survey

    Get PDF
    This paper presents the richness of submillimeter spectral features in the high-mass star forming region AFGL 2591. As part of the CHESS (Chemical Herschel Survey of Star Forming Regions) Key Programme, AFGL 2591 was observed by the Herschel/HIFI instrument. The spectral survey covered a frequency range from 480 up to 1240 GHz as well as single lines from 1267 to 1901 GHz (i.e. CO, HCl, NH3, OH and [CII]). Rotational and population diagram methods were used to calculate column densities, excitation temperatures and the emission extents of the observed molecules associated with AFGL 2591. The analysis was supplemented with several lines from ground-based JCMT spectra. From the HIFI spectral survey analysis a total of 32 species were identified (including isotopologues). In spite of the fact that lines are mostly quite week, 268 emission and 16 absorption lines were found (excluding blends). Molecular column densities range from 6e11 to 1e19 cm-2 and excitation temperatures range from 19 to 175 K. One can distinguish cold (e.g. HCN, H2S, NH3 with temperatures below 70 K) and warm species (e.g. CH3OH, SO2) in the protostellar envelope.Comment: Accepted to A&

    Complex molecules in the hot core of the low mass protostar NGC1333-IRAS4A

    Full text link
    We report the detection of complex molecules (HCOOCH_3, HCOOH and CH_3CN), signposts of a "hot core" like region, toward the low mass, Class 0 source NGC1333-IRAS4A. This is the second low mass protostar where such complex molecules have been searched for and reported, the other source being IRAS16293-2422. It is therefore likely that compact (few tens of AUs) regions of dense and warm gas, where the chemistry is dominated by the evaporation of grain mantles, and where complex molecules are found, are common in low mass Class 0 sources.Given that the chemical formation timescale is much shorter than the gas hot core crossing time, it is not clear whether the reported complex molecules are formed on the grain surfaces (first generation molecules) or in the warm gas by reactions involving the evaporated mantle constituents (second generation molecules). We do not find evidence for large differences in the molecular abundances, normalized to the formaldehyde abundance, between the two solar type protostars, suggesting perhaps a common origin.Comment: 13 pages, 3 figures; accepted by Ap

    Broad N2H+ emission towards the protostellar shock L1157-B1

    Full text link
    We present the first detection of N2H+ towards a low-mass protostellar outflow, namely the L1157-B1 shock, at about 0.1 pc from the protostellar cocoon. The detection was obtained with the IRAM 30-m antenna. We observed emission at 93 GHz due to the J = 1-0 hyperfine lines. The analysis of the emission coupled with the HIFI CHESS multiline CO observations leads to the conclusion that the observed N2H+(1-0) line originates from the dense (> 10^5 cm-3) gas associated with the large (20-25 arcsec) cavities opened by the protostellar wind. We find a N2H+ column density of few 10^12 cm-2 corresponding to an abundance of (2-8) 10^-9. The N2H+ abundance can be matched by a model of quiescent gas evolved for more than 10^4 yr, i.e. for more than the shock kinematical age (about 2000 yr). Modelling of C-shocks confirms that the abundance of N2H+ is not increased by the passage of the shock. In summary, N2H+ is a fossil record of the pre-shock gas, formed when the density of the gas was around 10^4 cm-3, and then further compressed and accelerated by the shock.Comment: ApJ, in pres
    corecore