18 research outputs found

    On defining rules for cancer data fabrication

    Get PDF
    Funding: This research is partially funded by the Data Lab, and the EU H2020 project Serums: Securing Medical Data in Smart Patient-Centric Healthcare Systems (grant 826278).Data is essential for machine learning projects, and data accuracy is crucial for being able to trust the results obtained from the associated machine learning models. Previously, we have developed machine learning models for predicting the treatment outcome for breast cancer patients that have undergone chemotherapy, and developed a monitoring system for their treatment timeline showing interactively the options and associated predictions. Available cancer datasets, such as the one used earlier, are often too small to obtain significant results, and make it difficult to explore ways to improve the predictive capability of the models further. In this paper, we explore an alternative to enhance our datasets through synthetic data generation. From our original dataset, we extract rules to generate fabricated data that capture the different characteristics inherent in the dataset. Additional rules can be used to capture general medical knowledge. We show how to formulate rules for our cancer treatment data, and use the IBM solver to obtain a corresponding synthetic dataset. We discuss challenges for future work.Postprin

    Altered Small-World Brain Networks in Schizophrenia Patients during Working Memory Performance

    Get PDF
    Impairment of working memory (WM) performance in schizophrenia patients (SZ) is well-established. Compared to healthy controls (HC), SZ patients show aberrant blood oxygen level dependent (BOLD) activations and disrupted functional connectivity during WM performance. In this study, we examined the small-world network metrics computed from functional magnetic resonance imaging (fMRI) data collected as 35 HC and 35 SZ performed a Sternberg Item Recognition Paradigm (SIRP) at three WM load levels. Functional connectivity networks were built by calculating the partial correlation on preprocessed time courses of BOLD signal between task-related brain regions of interest (ROIs) defined by group independent component analysis (ICA). The networks were then thresholded within the small-world regime, resulting in undirected binarized small-world networks at different working memory loads. Our results showed: 1) at the medium WM load level, the networks in SZ showed a lower clustering coefficient and less local efficiency compared with HC; 2) in SZ, most network measures altered significantly as the WM load level increased from low to medium and from medium to high, while the network metrics were relatively stable in HC at different WM loads; and 3) the altered structure at medium WM load in SZ was related to their performance during the task, with longer reaction time related to lower clustering coefficient and lower local efficiency. These findings suggest brain connectivity in patients with SZ was more diffuse and less strongly linked locally in functional network at intermediate level of WM when compared to HC. SZ show distinctly inefficient and variable network structures in response to WM load increase, comparing to stable highly clustered network topologies in HC

    Progression from selective to general involvement of hippocampal subfields in schizophrenia

    Get PDF
    Volume deficits of the hippocampus in schizophrenia have been consistently reported. However, the hippocampus is anatomically heterogeneous; it remains unclear whether certain portions of the hippocampus are affected more than others in schizophrenia. In this study, we aimed to determine whether volume deficits in schizophrenia are confined to specific subfields of the hippocampus and to measure the subfield volume trajectories over the course of the illness. MRI scans were obtained from Dataset 1: 155 patients with schizophrenia (mean duration of illness of 7 years) and 79 healthy controls, and Dataset 2: an independent cohort of 46 schizophrenia patients (mean duration of illness of 18 years) and 46 healthy controls. In addition, follow-up scans were collected for a subset of Dataset 1. A novel, automated method based on an atlas constructed from ultra-high resolution, post-mortem hippocampal tissue was used to label 7 hippocampal subfields. Significant cross-sectional volume deficits in the CA1, but not of the other subfields, were found in the schizophrenia patients of Dataset 1. However, diffuse cross-sectional volume deficits across all subfields were found in the more chronic and ill schizophrenia patients of Dataset 2. Consistent with this pattern, the longitudinal analysis of Dataset 1 revealed progressive illness-related volume loss (~ 2 to 6% per year) that extended beyond CA1 to all of the other subfields. This decline in volume correlated with symptomatic worsening. Overall, these findings provide converging evidence for early atrophy of CA1 in schizophrenia, with extension to other hippocampal subfields and accompanying clinical sequelae over time
    corecore