
On Defining Rules for Cancer Data Fabrication?

Juliana K. F. Bowles1[0000−0002−5918−9114], Agastya
Silvina1[0000−0002−0012−9256], Eyal Bin2, and Michael Vinov2

1 School of Computer Science, University of St Andrews
St Andrews KY16 9SX, UK

{jkfb|as362}@st-andrews.ac.uk
2 IBM Research Laboratory, Haifa, Israel

{bin|vinov}@il.ibm.com

Abstract. Data is essential for machine learning projects, and data ac-
curacy is crucial for being able to trust the results obtained from the asso-
ciated machine learning models. Previously, we have developed machine
learning models for predicting the treatment outcome for breast cancer
patients that have undergone chemotherapy, and developed a monitor-
ing system for their treatment timeline showing interactively the options
and associated predictions. Available cancer datasets, such as the one
used earlier, are often too small to obtain significant results, and make
it difficult to explore ways to improve the predictive capability of the
models further. In this paper, we explore an alternative to enhance our
datasets through synthetic data generation. From our original dataset,
we extract rules to generate fabricated data that capture the different
characteristics inherent in the dataset. Additional rules can be used to
capture general medical knowledge. We show how to formulate rules for
our cancer treatment data, and use the IBM solver to obtain a corre-
sponding synthetic dataset. We discuss challenges for future work.

Keywords: Cancer data · Synthetic Data · Constraint Solvers · Fabri-
cation Rules

1 Introduction

Data accuracy is crucial for being able to trust the results obtained from any
machine learning models. Previously, we have developed machine learning mod-
els for predicting the treatment outcome for breast cancer patients that have
undergone chemotherapy at a health board in Scotland [11], and developed a
monitoring system for their treatment timeline showing interactively the op-
tions and associated predictions [12]. Available cancer datasets, such as the one
used in our work, are often too small to obtain significant results, and make
it difficult to explore ways to improve the predictive capability of the models
further. Within the options available with machine learning and deep learning,

? This research is partially funded by the Data Lab, and the EU H2020 project Serums:
Securing Medical Data in Smart Patient-Centric Healthcare Systems (grant 826278).

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by St Andrews Research Repository

https://core.ac.uk/display/333537948?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

we often require substantially more data than we can get access to. Even though
we have direct access to the oncology dataset within the local health board, it
is not easy to extract the required quantity of data for developing our model.
Indeed, there may not be enough data available to perform a suitable analysis.

We explore an alternative approach to enhance our cancer dataset through
synthetic data generation. This approach gives us enough data to design proof-
of-concept enhanced prediction models. From our original dataset, we extract
rules to fabricate data. These rules must formulate exactly the characteristics
of the original dataset. Further rules can be added to capture general medical
knowledge and information that a small dataset may not contain. This paper
shows how to formulate all required rules for our cancer treatment data, which
will enable us to obtain a corresponding synthetic dataset. An added complexity
in our dataset is the relationship between different events throughout the treat-
ment of a patient. Hence, to generate realistic synthetic datasets, we have to be
able to capture accurately the various constraints associated to a treatment as
well as possible relationships between events. We will show that the IBM Data
Fabrication Platform allows us to capture these complex constraints as needed.

This paper is structured as follows: Section 2 motivates our approach, presents
related work, and describes the structure of the original dataset and some re-
strictions on what is involved in a chemotherapy treatment for a given patient.
Section 3 gives a brief description of the IBM data fabrication platform, and
shows how to obtain the rules for our cancer treatment dataset. We conclude in
Section 4 with a discussion of future work.

2 Motivation, Related Work and Cancer Data

Obtaining accurate toxicity prediction models in cancer care is vital, as it can
help identify treatments that are not suited to a patient, and thus improve their
outcome overall. However, cancer treatment data, and healthcare data in general,
may be limited or difficult to access due to its sensitive and private nature.

There are advantages of using synthetic data in the healthcare domain. Fab-
ricated data allows us to start building models without the need to access real
data. We can fabricate large-scale datasets quickly, which allows us to improve
the model to resist over-fitting (often a problem with small datasets). Further-
more, the use of synthetic data enables us to simulate outlier events (e.g., rare
diseases). Note that we later need to retrain the model with the real dataset.

One option to generate fabricated data involves the use of an existing dataset
and imputing the values for a desired field. Rubin [10] proposed the idea of using
multiple imputations for all the data-points in the dataset to generate a (partial
or complete) synthetic dataset. In statistics, imputation is the process of replac-
ing missing data with substituted values. Given enough data and iterations, it
is possible to generate a synthetic dataset for specific purposes. With the rise
of machine learning in data mining, Reiter et al. [8, 4] extend the idea of using
multiple imputers by using several machine learning algorithms to generate syn-
thetic data. There are many data synthesisers [5] available with machine learning

models (e.g., linear regression, random forest, decision tree, neural networks) in
their backbone. However, machine learning is not well suited for this task: we
need sufficient data to be able to infer a pattern in the dataset, and machine
learning cannot capture data sequences accurately. Data sequences arise in a
cancer dataset, where every entry corresponds to a patient event (e.g., hospital
visit, treatment), and several events form an ordered sequence in the treatment.

Generating data with potentially complicated dependencies, requires the use
of solvers, such as constraint satisfaction problem (CSP) solvers [13] or satisfia-
bility modulo theories (SMT) solvers [7]. As an example, there is a solution that
generates data for form-centric applications using an SMT solver [2]. Although
this may avoid many of the challenges of other data formats, such as relational
databases with complex topologies and hierarchical structures, the solution uses
workarounds which can introduce an under approximation of the solution space,
thus yielding additional complications to the solver. These complications affect
the performance and the scalability of the technology, as well as the quality of
its results. In our approach we use the IBM solver which avoids these issues.

We use a cancer dataset extract from a Scottish health board from 2014 to
2016, consisting of Scottish Morbidity Records3 which includes SMR01 (hospi-
tal admission data), SMR06 (cancer registry), and Charlson Comorbidity Index
(categorising the coexistence of a chronic condition with cancer [9]); National
Records of Scotland (e.g., Data on Deaths); the Oncology DCO database which
includes Demographics (e.g., date of birth, gender, ethnicity), Diagnosis (e.g.,
cancer stage and site), Surgery and ChemoCare (e.g., chemocare general and
chemocare toxicity). In addition, note that a patient in Scotland is uniquely
identified by a Community Health Index (CHI).

A cancer patient may be given a series of different treatments, known as a
treatment pathway. New patients undergo different sets of tests (e.g., MRI, CT
SCAN) to determine the type of cancer and the first treatment to be given.
There are several types of primary and follow-up treatments, but we focus
on chemotherapy treatments here. Chemotherapy uses one or more anti-cancer
drugs as part of a standardised chemotherapy regimen, and may be given with
a curative intent, or with a palliative intent where the aim is to prolong life or
to reduce symptoms. Overall the treatment is very aggressive and it affects the
toxicity levels of the patient, particularly in case of comorbidities. Predicting
toxicity levels is thus important throughout the treatment in order to be able to
adjust it for the wellbeing of the patient. The general pattern of chemotherapy,
important to define correct rules for data fabrication, is given below:

– A patient can only be treated with one intention or purpose of the treatment,
such as, curative, palliative, adjuvant (an add-on therapy).

– After a specific time has passed, in case of cancer relapse, the patient might
be given another treatment with a different intention.

– Each intention has several different regimens.
– Each regimen has several different drugs.

3 See https://www.ndc.scot.nhs.uk/National-Datasets/ for Information on SMR
datasets.

– The treatment may last for several weeks or months that is given in cycles.
Hence, each regimen may have more than one cycle.

– A patient may be given several regimens at a time.
– Some regimens may belong to one protocol.

3 The IBM Data Fabrication Platform and Cancer Rules

We use the IBM Data Fabrication Platform (DFP) to generate synthetic data
for our application [6]. DFP is based on rule-guided fabrication whereby the data
and metadata logic is extracted from the underlying real data or its description
and is modelled using rules that the platform provides. DFP allows for new
rule types to be added by users. Once a user requests the generation of a certain
amount of data into a set of test databases or test files, the platform ensures that
the generated data satisfies the modelled rules as well as the data consistency
requirements. The platform is capable of generating data from scratch which we
do for our dataset. We define the rules, type of data, volume of data, and the
relationships among different columns in the dataset. The rule types include:

– Constraints: domains, mathematical functions, arithmetical relations, string
relations, regular expressions.

– Knowledge: chosen from existing data sources.
– Analytics: value and pattern distributions, smart classifications.
– Transformations: constraints describing relations between targets and sources,

can be bundled to transform tuples.
– Programmatic rules: user-defined code/script functions that generate target

values.

Once the user has defined the data sources and rules, the solution builds the
fabrication task, maintaining the referential integrity of data based on database
constraints or applied constraints. Here, the constraints are solved by the solver
and the solution is used to obtain the fabricated dataset [1]. The output can
have multiple formats/extensions.

In order to generate fabricated data, we need to provide the constraints of
the variables within the domain including the data fields and ranges of values.
After specifying the constraints, the solver finds solutions by constraint propa-
gation and search. Every time the solver generates a solution to all given rules
(constraints), this solution is an instance in our dataset. Running the solver an
indefinite number of times will give us a fabricated dataset which satisfies all
the provided constraints. In case of inconsistencies in rules, no solution can be
generated, but it indicates which rules are in conflict and these can be corrected.

Rules are formulated following the syntax accepted by the solver, which in-
cludes conditions, dependencies between fields, mathematical equations, order-
ing, and Boolean conditions. We can express weighted/probability, normal, and
random distributions to determine the value of our fields.

Rules may result from a combination of medical knowledge and information
extracted from the real dataset. Consider the rule below. If it is known that the

cancer has metastasised into site C34.9 we set pulmonary flag to 1. Otherwise,
we use a weight distribution to set the value of pulmonary flag. We infer the
weight distribution from the data extraction.

general.pulmonary_flag = (

// Knowledge:

(general.metastasis1 == ’C34.9’ || general.metastasis2 == ’C34.9’

|| general.metastasis3 == ’C34.9’) ? 1 :

// From extraction:

randomWeightedValue(general.pulmonary_flag,1200? 0, 120 ? 1).)

In Scotland, patients have a unique identifier given by the Community Health
Index (CHI). The CHI has 10 digits consisting of the date-of-birth (DDMMYY)
followed by a three-digit sequence number and a check digit. The ninth digit is
always even for females and odd for males. To generate a proper CHI for patients
we have to model this definition through several rules. For instance,

allDiff(from(general), general.chi)

specifies that every CHI is unique. The next rule specifies the structure of a CHI,

general.chi = concat(dateToString(general.DOB,DMy),

intToString(general.D7),intToString(general.D8),

intToString(general.D9),intToString(general.D10))

where the last four digits follow specific constraints. Here D7,D8,D10 are arbi-
trary, e.g., 0 <= general.D7 <= 9, and D9 is used to indicate gender, which in
our case has a 0.99 probability of being female given by:

randomBool(99)?general.D9 = {0,2,4,6,8}:general.D9 = {1,3,5,7,9}

We specify the first incident date or diagnosis date, to be between 2014 and
2016 by using the equality-inequality relation:

currentDate-(6*365)<general.incidence_date<= currentDate-(4*365)

We can use regular expressions to capture a postcode, and assign constants to
fields such as cancer site, general.site = ’C50.9’ to indicate breast cancer.
We perform summation to populate the Charlson Comorbidity Index [9]. There
are field values which influence other field values, and can be captured through
implication (if there is not a first metastasis there cannot be a second or third).

(general.metastasis1 is Null -->> general.metastasis2 is Null)

->> general.metastasis3 is Null

To populate some fields we check whether we can use a normal distribution or
add another correlation between fields from inspecting the original dataset. For
instance, for the BMI we use the probability distribution to determine the cate-
gory (e.g. underweight, normal, overweight) and then use a normal distribution
to populate the exact BMI value for the patients in each category.

Some patients may have more than one hospital admission (recorded in the
dataset SMR01) during their cancer care, for example, when they experience

side-effects as a result of their treatment. Here, we create a new table for the
patient admission and use the CHI as a reference to the general table. First, we
specify the admission rate to fabricate the admission data. The rule is as follow:

numOf(from(smr01s), smr01s.chi = general.chi) =

randomWeightedNumber(500 ? 1,300 ? 2,200 ? 0)

stating that 50% of patients have one admission, 30% have two and 20%
patients have none. Since the admission date is time based (sequential), we
create another helper field, elapsed days. The admission date depends on both.

smr01s.admission_date=(smr01s.incidence_date + smr01s.elapsed_days)

The elapsed date has a monotonically increasing value as follows:

monotonic(from(smr01s), per(smr01s.chi), smr01s.elapsed_days,

{normalDistributionNumber(110.4, 17.2)}, randomNumber(14,100))

The first value for elapsed days is populated using a normal distribution with
110.4 as the mean and 17.2 as the variance. The next instance of elapsed days
increases by a random number between 14 to 100 days. Because the admission
date is calculated by adding elapsed days to incidence date, its value increases
sequentially. With this, we can fabricate a patient’s admission event.

The next dataset we fabricate is the chemotherapy treatment dataset, where
the main challenge is capturing the relation between data that belongs to the
same patient. Briefly, a patient may have more than one intention, and each in-
tention may have more than one regimen. Each regimen has more than one cycle
and so on. To capture this relation, we created five helper tables (i.e., patients,
intentions, regimens, cycles, and drugs). There are similarities between these
helper tables. We create patients as the reference point. We create intentions
to model the condition where each patient may have one or more intentions.
Similarly, regimens is created to model the condition where each intention may
have one or more regimens (i.e., cycles and drugs have the same purpose). Each
helper table has foreign keys to each other (e.g., patient id, intention id).

The patients table has the demographic information during the treatment,
with values assumed to be relatively constant, such as CHI, height, hospital,
tumour group. The patients table acts as the proxy to the general where CHI is
used as the foreign key. The ratio between the data in the patients and general
table is set to one. We also have the first intention field in this table, used as
the reference for populating the intention value. We use randomWeightedValue
to populate this field. By counting the number of each intention occurring in the
first cycle, we can get the weight value. The rule for the first intention is shown
below:

patients.first_intention = randomWeightedNumber(

350? s’Adjuvant’,

200? s’Palliative’,

180? s’Neo-Adjuvant’,

15? s’Durable Remission’,

5? s’Curative’)

The ratio between the patients and the intentions tables is determined by
the first intention because some intentions may or may not have follow up treat-
ments. We specify the intentions.ratio rule as follow:

numOf(from(intentions),

intentions.patient_id = patients.patient_id)= (

intentions.first_intention == ’Adjuvant’ ?

randomWeightedNumber(15? 2: 1),

intentions.first_intention == ’Durable Remission’ ? 1,

intentions.first_intention == ’Neo-adjuvant’ ?

randomWeightedNumber(60? 2: 1),

intentions.first_intention == ’Palliative’ ? 1,

intentions.first_intention == ’Curative’ ? 1)

The first intention field determines the value of the next instance of inten-
tion. Similarly to the patients, we have a field first regimen. The value of this
field depends on intentions.intention and has the same function like the field
first intention (i.e., this method is repeated to capture the sequence behaviour
for cycles and drugs).

To populate the treatment appointment date we use a similar rule (as for
instance for patient hospital admission) as mentioned before. We have the ap-
pointment date field in intentions to populate the first appointment date for
each intention. In the intentions table, we set elapsed days based on the regi-
men ratio, cycle ratio and regimen interval days to prevent the overlap between
appointment dates for each regimen.

In the regimens, we have another elapsed day field to determine the date of
the first regimen. The starting date for the regime.elapsed day is taken from the
regimen.init appointment date. The regimen.init appointment date equals the in-
tention.appointment date. The rule for the regimen.elapsed day is as shown be-
low:

monotonic (from (regimens), per(regimen.intention_id),

regimen.elapsed_days, (cycle_ratio * regimen_interval_days),

{regimen.init_appointment_date})

Unlike intentions and regimens, we have the cycle ratio in the regimens because
we need to know the number of cycles for determining the correct elapsed days
between regimens.

Finally, to populate several fields like the toxicity outcome, regimens and
performance status, we integrate a simple Markov model into the rules (the value
of the current fields depends only on its previous value). We use the previous
value because we have observed a high correlation, based on the Pearson standard
of correlation [3], between the previous value and the current value.

4 Conclusions and Future Work

We presented some of the rules describing the characteristics of our cancer treat-
ment dataset which are fed to the IBM Data Fabrication Platform to generate

synthetic data. The rules describe the expected range of values within a column,
relationships between columns, and - more significantly - relationships between
rows where these describe different events in the treatment of the same patient.
An accurate set of rules is essential to generate realistic data, and we need to
evaluate how realistic the synthetic data is. Machine learning can be useful to
establish this to some extent, but was outside the scope of the present paper.

Although synthetic data is valuable it is not a replacement of real data. If
all the features present in a dataset have been incorporated into a synthetic
dataset, then the later may in fact have the same biases as the original dataset.
However, we believe that an added advantage of using the IBM Data Fabrication
Platform comes from the ability to generate rules derived from a combination of
domain knowledge directly (in our context this includes information from clinical
guidelines, clinical studies as well as medical practice) and features extracted
from real data. This flexibility, may consequently lead to a synthetic dataset less
prone to biases inherent in real data specially when real datasets are small.

References

1. Adir, A., Levy, R., Salman, T.: Dynamic test data generation for data intensive
applications. In: Hardware and Software: Verification and Testing (HVC 2011).
LNCS, vol. 7261, pp. 219–233. Springer (2011)

2. Adorf, H.M., Varendorff, M.: Constraint-based automated generation of test data.
In: Software Quality: Model-Based Approaches for Advanced Software and Systems
Engineering (SWQD 2014). LNBIP, vol. 166, pp. 199–213. Springer (2014)

3. Akoglu, H.: User’s guide to correlation coefficients. Turk J Emerg Med 18, 91–93
(2018)

4. Caiola, G., Reiter, J.P.: Random forests for generating partially synthetic categor-
ical data. Transactions on Data Privacy 3, 27–42 (2010)

5. Dandekar, A., Zen, R.A.M., Bressan, S.: Comparative evaluation of synthetic data
generation methods. In: Proceedings of ACM conference (Deep Learning Security
Workshop) (2017)

6. Janic, V., Bowles, J.K.F., Vermeulen, A.F., et al.: The Serums tool-chain: Ensuring
security and privacy of medical data in smart patient-centric healthcare systems.
In: IEEE International Conference on Big Data (IEEE Big Data 2019) (2019)

7. de Moura, L., Bjørner, N.: Satisfiability Modulo Theories: Introduction and appli-
cations. Communications of the ACM 54(9), 69–77 (sep 2011)

8. Reiter, J.P.: Using CART to generate partially synthetic public use microdata.
Journal of Official Statistics 21, 441–462 (2005)

9. Roffman, C.E., Buchanan, J., Allison, G.T.: Charlson Comorbidities Index. Journal
of physiotherapy 62, 171 (2016)

10. Rubin, D.B.: Discussion statistical disclosure limitation. Journal of Official Statis-
tics 9, 461–468 (1993)

11. Silvina, A., Bowles, J., Hall, P.: On predicting the outcomes of chemotherapy
treatments in breast cancer. In: Artificial Intelligence in Medicine. LNCS, vol.
11526, pp. 180–190. Springer (2019)

12. Silvina, A., Bowles, J., Hall, P.: Combining patient pathway visualisation with pre-
diction outcomes for chemotherapy treatments. In: 12th International Conference
on eHealth, Telemedicine, and Social Medicine. pp. 108–113. IARIA (2020)

13. Tsang, E.: Foundations of Constraint Satisfaction. Academic Press (1993)

