110 research outputs found

    Identification of a Novel Chromosomal Passenger Complex and Its Unique Localization during Cytokinesis in Trypanosoma brucei

    Get PDF
    Aurora B kinase is a key component of the chromosomal passenger complex (CPC), which regulates chromosome segregation and cytokinesis. An ortholog of Aurora B was characterized in Trypanosoma brucei (TbAUK1), but other conserved components of the complex have not been found. Here we identified four novel TbAUK1 associated proteins by tandem affinity purification and mass spectrometry. Among these four proteins, TbKIN-A and TbKIN-B are novel kinesin homologs, whereas TbCPC1 and TbCPC2 are hypothetical proteins without any sequence similarity to those known CPC components from yeasts and metazoans. RNAi-mediated silencing of each of the four genes led to loss of spindle assembly, chromosome segregation and cytokinesis. TbKIN-A localizes to the mitotic spindle and TbKIN-B to the spindle midzone during mitosis, whereas TbCPC1, TbCPC2 and TbAUK1 display the dynamic localization pattern of a CPC. After mitosis, the CPC disappears from the central spindle and re-localizes at a dorsal mid-point of the mother cell, where the anterior tip of the daughter cell is tethered, to start cell division toward the posterior end, indicating a most unusual CPC-initiated cytokinesis in a eukaryote

    Proxy evidence for state-dependence of climate sensitivity in the Eocene greenhouse

    Get PDF
    Despite recent advances, the link between the evolution of atmospheric CO2 and climate during the Eocene greenhouse remains uncertain. In particular, modelling studies suggest that in order to achieve the global warmth that characterised the early Eocene, warmer climates must be more sensitive to CO2 forcing than colder climates. Here, we test this assertion in the geological record by combining a new high-resolution boron isotope-based CO2 record with novel estimates of Global Mean Temperature. We find that Equilibrium Climate Sensitivity (ECS) was indeed higher during the warmest intervals of the Eocene, agreeing well with recent model simulations, and declined through the Eocene as global climate cooled. These observations indicate that the canonical IPCC range of ECS (1.5 to 4.5 °C per doubling) is unlikely to be appropriate for high-CO2 warm climates of the past, and the state dependency of ECS may play an increasingly important role in determining the state of future climate as the Earth continues to warm

    Nutritional psychiatry research: an emerging discipline and its intersection with global urbanization, environmental challenges and the evolutionary mismatch

    Full text link

    Tracking SARS-CoV-2 mutations and variants through the COG-UK-Mutation Explorer

    Get PDF
    COG-UK Mutation Explorer (COG-UK-ME, https://sars2.cvr.gla.ac.uk/cog-uk/—last accessed date 16 March 2022) is a web resource that displays knowledge and analyses on SARS-CoV-2 virus genome mutations and variants circulating in the UK, with a focus on the observed amino acid replacements that have an antigenic role in the context of the human humoral and cellular immune response. This analysis is based on more than 2 million genome sequences (as of March 2022) for UK SARS-CoV-2 data held in the CLIMB-COVID centralised data environment. COG-UK-ME curates these data and displays analyses that are cross-referenced to experimental data collated from the primary literature. The aim is to track mutations of immunological importance that are accumulating in current variants of concern and variants of interest that could alter the neutralising activity of monoclonal antibodies (mAbs), convalescent sera, and vaccines. Changes in epitopes recognised by T cells, including those where reduced T cell binding has been demonstrated, are reported. Mutations that have been shown to confer SARS-CoV-2 resistance to antiviral drugs are also included. Using visualisation tools, COG-UK-ME also allows users to identify the emergence of variants carrying mutations that could decrease the neutralising activity of both mAbs present in therapeutic cocktails, e.g. Ronapreve. COG-UK-ME tracks changes in the frequency of combinations of mutations and brings together the curated literature on the impact of those mutations on various functional aspects of the virus and therapeutics. Given the unpredictable nature of SARS-CoV-2 as exemplified by yet another variant of concern, Omicron, continued surveillance of SARS-CoV-2 remains imperative to monitor virus evolution linked to the efficacy of therapeutics

    International Consensus Statement on Rhinology and Allergy: Rhinosinusitis

    Get PDF
    Background: The 5 years since the publication of the first International Consensus Statement on Allergy and Rhinology: Rhinosinusitis (ICAR‐RS) has witnessed foundational progress in our understanding and treatment of rhinologic disease. These advances are reflected within the more than 40 new topics covered within the ICAR‐RS‐2021 as well as updates to the original 140 topics. This executive summary consolidates the evidence‐based findings of the document. Methods: ICAR‐RS presents over 180 topics in the forms of evidence‐based reviews with recommendations (EBRRs), evidence‐based reviews, and literature reviews. The highest grade structured recommendations of the EBRR sections are summarized in this executive summary. Results: ICAR‐RS‐2021 covers 22 topics regarding the medical management of RS, which are grade A/B and are presented in the executive summary. Additionally, 4 topics regarding the surgical management of RS are grade A/B and are presented in the executive summary. Finally, a comprehensive evidence‐based management algorithm is provided. Conclusion: This ICAR‐RS‐2021 executive summary provides a compilation of the evidence‐based recommendations for medical and surgical treatment of the most common forms of RS

    Mindfulness-and body-psychotherapy-based group treatment of chronic tinnitus: a randomized controlled pilot study

    Get PDF
    Background Tinnitus, the perception of sound in absence of an external acoustic source, impairs the quality of life in 2% of the population. Since in most cases causal treatment is not possible, the majority of therapeutic attempts aim at developing and strengthening individual coping and habituation strategies. Therapeutic interventions that incorporate training in mindfulness meditation have become increasingly popular in the treatment of stress-related disorders. Here we conducted a randomized, controlled clinical study to investigate the efficacy of a specific mindfulness- and body-psychotherapy based program in patients suffering from chronic tinnitus. Methods Thirty-six patients were enrolled in this pilot study. The treatment was specifically developed for tinnitus patients and is based on mindfulness and body psychotherapy. Treatment was performed as group therapy at two training weekends that were separated by an interval of 7 weeks (eleven hours/weekend) and in four further two-hour sessions (week 2, 9, 18 and 22). Patients were randomized to receive treatment either immediately or after waiting time, which served as a control condition. The primary study outcome was the change in tinnitus complaints as measured by the German Version of the Tinnitus Questionnaire (TQ). Results ANOVA testing for the primary outcome showed a significant interaction effect time by group (F = 7.4; df = 1,33; p = 0.010). Post hoc t-tests indicated an amelioration of TQ scores from baseline to week 9 in both groups (intervention group: t = 6.2; df = 17; p < 0.001; control group: t = 2.5; df = 16; p = 0.023), but the intervention group improved more than the control group. Groups differed at week 7 and 9, but not at week 24 as far as the TQ score was concerned. Conclusions Our results suggest that this mindfulness- and body-psychotherapy-based approach is feasible in the treatment of tinnitus and merits further evaluation in clinical studies with larger sample sizes. The study is registered with clinicaltrials.gov (NCT01540357)

    Cyclostratigraphy and eccentricity tuning of the early Oligocene through early Miocene (30.1–17.1 Ma): Cibicides mundulus stable oxygen and carbon isotope records from Walvis Ridge Site 1264

    No full text
    Few astronomically calibrated high-resolution (≤5 kyr) climate records exist that span the Oligocene–Miocene time interval. Notably, available proxy records show responses varying in amplitude at frequencies related to astronomical forcing, and the main pacemakers of global change on astronomical time-scales remain debated. Here we present newly generated X-ray fluorescence core scanning and benthic foraminiferal stable oxygen and carbon isotope records from Ocean Drilling Program Site 1264 (Walvis Ridge, southeastern Atlantic Ocean). Complemented by data from nearby Site 1265, the Site 1264 benthic stable isotope records span a continuous ∼13-Myr interval of the Oligo-Miocene (30.1–17.1 Ma) at high resolution (∼3.0 kyr). Spectral analyses in the stratigraphic depth domain indicate that the largest amplitude variability of all proxy records is associated with periods of ∼3.4 m and ∼0.9 m, which correspond to 405- and ∼110-kyr eccentricity, using a magnetobiostratigraphic age model. Maxima in CaCO3 content, δ18O and δ13C are interpreted to coincide with ∼110 kyr eccentricity minima. The strong expression of these cycles in combination with the weakness of the precession- and obliquity-related signals allow construction of an astronomical age model that is solely based on tuning the CaCO3 content to the nominal (La2011_ecc3L) eccentricity solution. Very long-period eccentricity maxima (∼2.4-Myr) are marked by recurrent episodes of high-amplitude ∼110-kyr δ18O cycles at Walvis Ridge, indicating greater sensitivity of the climate/cryosphere system to short eccentricity modulation of climatic precession. In contrast, the responses of the global (high-latitude) climate system, cryosphere, and carbon cycle to the 405-kyr cycle, as expressed in benthic δ18O and especially δ13C signals, are more pronounced during ∼2.4-Myr minima. The relationship between the recurrent episodes of high-amplitude ∼110-kyr δ18O cycles and the ∼1.2-Myr amplitude modulation of obliquity is not consistent through the Oligo-Miocene. Identification of these recurrent episodes at Walvis Ridge, and their pacing by the ∼2.4-Myr eccentricity cycle, revises the current understanding of the main climate events of the Oligo-Miocene

    Information-Theoretic Assessment

    No full text
    corecore