39 research outputs found

    Presentation and analysis of a worldwide database for lava dome collapse events: the Global Archive of Dome Instabilities (GLADIS)

    Get PDF
    Lava dome collapses generate hazardous pyroclastic flows, rockfalls and debris avalanches. Despite advances in understanding lava dome collapses and their resultant products, the conditions that occur prior to collapse are still poorly understood. Here we introduce the Global Archive of Dome Instabilities (GLADIS), a database that compiles worldwide historical dome collapses and their reported properties, including original dome volume (at the time of collapse), dome morphology, emplacement conditions, precursory activity, dome geometry and deposit characteristics. We determine the collapse magnitude for events where possible, using both absolute deposit volumes and relative collapse volume ratios (this being deposit volume as a proportion of original dome volume). We use statistical analysis to explore whether relationships exist between collapse magnitude and extrusion rate, dome growth style, original dome volume, and causal mechanism of collapse. We find that relative collapse magnitude is independent of both the extrusion rate and the original dome volume. Relative collapse volume ratio is dependent on dome growth style, where endogenous growth is found to precede the largest collapses (~75% original volume). Collapses that comprise a higher proportion (<50%) of original dome volume are particularly attributed to both gravitational loading and the development of gas overpressure, whilst collapses comprising a small proportion (<10%) of original dome volume are associated with the topography surrounding the dome, and variations in extrusion direction. By providing validation and/or source data, we intend these data on various dome growth and collapse events, and their associated mechanisms, to be the focus of future numerical modelling efforts, whilst the identified relationships with relative collapse volume ratios can inform collapse hazard assessment based on observations of a growing dome

    Imaging the 2013 explosive crater excavation and new dome formation at VolcĂĄn de Colima with TerraSAR-X, time-lapse cameras and modelling

    Get PDF
    The summit region of steep volcanoes hosting lava domes often displays rapid geomorphologic and structural changes, which are important for monitoring the source region of hazards. Explosive crater excavation is often followed by new lava-dome growth, which is one of the most dynamic morphometric changes that may occur at volcanoes. However, details of these crater formations, and the ensuing new dome growth remain poorly studied. A common problem is the lack of observational data due to hazardous field access and the limited resolution of satellite remote sensing techniques. This paper describes the destructive-constructive crater activity at VolcĂĄn de Colima, Mexico, which occurred between January and March 2013. The crater geometry and early dome formation were observed through a combination of high-resolution TerraSAR-X spotmode satellite radar images and permanently installed monitoring cameras. This combined time-lapse imagery was used to identify ring-shaped gas emissions prior to the explosion and to distinguish between the sequential explosion and crater excavation stages, which were followed by dome growth. By means of particle image velocimetry, the digital flow field is computed from consecutive camera images, showing that vertical dome growth is dominant at the beginning. The upward growth is found to grade into spreading and a lateral growth domain. After approximately two months of gradually filling the excavated craters with new magma, the dome overflows the western margin of the crater and develops into a flow that produces block and ash flow hazards. We discuss and compare the observations to discrete element models, allowing us to mimic the vertical and lateral growth history of the dome and to estimate the maximum strength of the bulk rock mass. Moreover, our results allow a discussion on the controls of a critical dome height that may be reached prior to its gravitational spreading

    Modulation of the immune response by nematode secreted acetylcholinesterase revealed by heterologous expression in Trypanosoma musculi

    Get PDF
    Nematode parasites secrete molecules which regulate the mammalian immune system, but their genetic intractability is a major impediment to identifying and characterising the biological effects of these molecules. We describe here a novel system for heterologous expression of helminth secreted proteins in the natural parasite of mice, Trypanosoma musculi, which can be used to analyse putative immunomodulatory functions. Trypanosomes were engineered to express a secreted acetylcholinesterase from Nippostrongylus brasiliensis. Infection of mice with transgenic parasites expressing acetylcholinesterase resulted in truncated infection, with trypanosomes cleared early from the circulation. Analysis of cellular phenotypes indicated that exposure to acetylcholinesterase in vivo promoted classical activation of macrophages (M1), with elevated production of nitric oxide and lowered arginase activity. This most likely occurred due to the altered cytokine environment, as splenocytes from mice infected with T. musculi expressing acetylcholinesterase showed enhanced production of IFNγ and TNFα, with diminished IL-4, IL-13 and IL-5. These results suggest that one of the functions of nematode secreted acetylcholinesterase may be to alter the cytokine environment in order to inhibit development of M2 macrophages which are deleterious to parasite survival. Transgenic T. musculi represents a valuable new vehicle to screen for novel immunoregulatory proteins by extracellular delivery in vivo to the murine host

    Proportions of CD4+ memory T cells are altered in individuals chronically infected with Schistosoma haematobium

    Get PDF
    Characterisation of protective helminth acquired immunity in humans or experimental models has focused on effector responses with little work conducted on memory responses. Here we show for the first time, that human helminth infection is associated with altered proportions of the CD4+ memory T cells, with an associated alteration of TH1 responses. The reduced CD4+ memory T cell proportions are associated with a significantly lower ratio of schistosome-specific IgE/IgG4 (marker for resistance to infection/re-infection) in uninfected older people. Helminth infection does not affect the CD8+ memory T cell pool. Furthermore, we show for the first time in a helminth infection that the CD4+ memory T cell proportions decline following curative anti-helminthic treatment despite increased CD4+ memory cell replication. Reduced accumulation of the CD4+ memory T cells in schistosome-infected people has implications for the development of natural or vaccine induced schistosome-specific protective immunity as well as for unrelated pathogens

    Imaging Immune Surveillance of Individual Natural Killer Cells Confined in Microwell Arrays

    Get PDF
    New markers are constantly emerging that identify smaller and smaller subpopulations of immune cells. However, there is a growing awareness that even within very small populations, there is a marked functional heterogeneity and that measurements at the population level only gives an average estimate of the behaviour of that pool of cells. New techniques to analyze single immune cells over time are needed to overcome this limitation. For that purpose, we have designed and evaluated microwell array systems made from two materials, polydimethylsiloxane (PDMS) and silicon, for high-resolution imaging of individual natural killer (NK) cell responses. Both materials were suitable for short-term studies (<4 hours) but only silicon wells allowed long-term studies (several days). Time-lapse imaging of NK cell cytotoxicity in these microwell arrays revealed that roughly 30% of the target cells died much more rapidly than the rest upon NK cell encounter. This unexpected heterogeneity may reflect either separate mechanisms of killing or different killing efficiency by individual NK cells. Furthermore, we show that high-resolution imaging of inhibitory synapse formation, defined by clustering of MHC class I at the interface between NK and target cells, is possible in these microwells. We conclude that live cell imaging of NK-target cell interactions in multi-well microstructures are possible. The technique enables novel types of assays and allow data collection at a level of resolution not previously obtained. Furthermore, due to the large number of wells that can be simultaneously imaged, new statistical information is obtained that will lead to a better understanding of the function and regulation of the immune system at the single cell level

    Hydrothermal alteration of andesitic lava domes can lead to explosive volcanic behaviour

    Get PDF
    Dome-forming volcanoes are among the most hazardous volcanoes on Earth. Magmatic outgassing can be hindered if the permeability of a lava dome is reduced, promoting pore pressure augmentation and explosive behaviour. Laboratory data show that acid-sulphate alteration, common to volcanoes worldwide, can reduce the permeability on the sample lengthscale by up to four orders of magnitude and is the result of pore- and microfracture-filling mineral precipitation. Calculations using these data demonstrate that intense alteration can reduce the equivalent permeability of a dome by two orders of magnitude, which we show using numerical modelling to be sufficient to increase pore pressure. The fragmentation criterion shows that the predicted pore pressure increase is capable of fragmenting the majority of dome-forming materials, thus promoting explosive volcanism. It is crucial that hydrothermal alteration, which develops over months to years, is monitored at dome-forming volcanoes and is incorporated into real-time hazard assessments
    corecore