113 research outputs found

    Seventy years of sex education in Health Education Journal: a critical review

    Get PDF
    This paper examines key debates and perspectives on sex education in Health Education Journal (HEJ), from the date of the journal’s first publication in March 1943 to the present day. Matters relating to sexuality and sexual health are revealed to be integral to HEJ’s history. First published as Health and Empire (1921 – 1942), a key purpose of the journal since its inception has been to share information on venereal disease and its prevention within the UK and across the former British Empire. From 1943 to the present day, discussions on sex education in the newly-christened HEJ both reflect and respond to evolving socio-cultural attitudes towards sexuality in the UK. Changing definitions of sex education across the decades are examined, from the prevention of venereal disease and moral decline in war-time Britain in the 1940s, to a range of responses to sexual liberation in the 1960s and 1970s; from a focus on preventing sexually-transmitted infections, teenage pregnancy and HIV in the 1980s, to the provision of sexual health services alongside sex education in the 2000s. Over the past 70 years, a shift from prevention of pre-marital sexual activity to the management of its outcomes is apparent; however, while these changes over time are notable, perhaps the most striking findings of this review are the continuities in arguments for and against the discussion of sexual issues. After more than 70 years of debate, it would seem that there is little consensus concerning motivations for and the content of sex education

    Inorganic carbon physiology underpins macroalgal responses to elevated CO2

    Get PDF
    Beneficial effects of CO2 on photosynthetic organisms will be a key driver of ecosystem change under ocean acidification. Predicting the responses of macroalgal species to ocean acidification is complex, but we demonstrate that the response of assemblages to elevated CO2 are correlated with inorganic carbon physiology. We assessed abundance patterns and a proxy for CO2:HCO3- use (\u3b413C values) of macroalgae along a gradient of CO2 at a volcanic seep, and examined how shifts in species abundance at other Mediterranean seeps are related to macroalgal inorganic carbon physiology. Five macroalgal species capable of using both HCO3- and CO2 had greater CO2 use as concentrations increased. These species (and one unable to use HCO3-) increased in abundance with elevated CO2 whereas obligate calcifying species, and non-calcareous macroalgae whose CO2 use did not increase consistently with concentration, declined in abundance. Physiological groupings provide a mechanistic understanding that will aid us in determining which species will benefit from ocean acidification and why

    Skeletal trade-offs in coralline algae in response to ocean acidification

    Get PDF
    Ocean acidification is changing the marine environment, with potentially serious consequences for many organisms. Much of our understanding of ocean acidification effects comes from laboratory experiments, which demonstrate physiological responses over relatively short timescales. Observational studies and, more recently, experimental studies in natural systems suggest that ocean acidification will alter the structure of seaweed communities. Here, we provide a mechanistic understanding of altered competitive dynamics among a group of seaweeds, the crustose coralline algae (CCA). We compare CCA from historical experiments (1981-1997) with specimens from recent, identical experiments (2012) to describe morphological changes over this time period, which coincides with acidification of seawater in the Northeastern Pacific. Traditionally thick species decreased in thickness by a factor of 2.0-2.3, but did not experience a change in internal skeletal metrics. In contrast, traditionally thin species remained approximately the same thickness but reduced their total carbonate tissue by making thinner inter-filament cell walls. These changes represent alternative mechanisms for the reduction of calcium carbonate production in CCA and suggest energetic trade-offs related to the cost of building and maintaining a calcium carbonate skeleton as pH declines. Our classification of stress response by morphological type may be generalizable to CCA at other sites, as well as to other calcifying organisms with species-specific differences in morphological types

    Cost-Effective Use of Silver Dressings for the Treatment of Hard-to-Heal Chronic Venous Leg Ulcers

    Get PDF
    Aim To estimate the cost-effectiveness of silver dressings using a health economic model based on time-to-wound-healing in hard-to-heal chronic venous leg ulcers (VLUs). Background Chronic venous ulceration affects 1–3% of the adult population and typically has a protracted course of healing, resulting in considerable costs to the healthcare system. The pathogenesis of VLUs includes excessive and prolonged inflammation which is often related to critical colonisation and early infection. The use of silver dressings to control this bioburden and improve wound healing rates remains controversial. Methods A decision tree was constructed to evaluate the cost-effectiveness of treatment with silver compared with non-silver dressings for four weeks in a primary care setting. The outcomes: ‘Healed ulcer’, ‘Healing ulcer’ or ‘No improvement’ were developed, reflecting the relative reduction in ulcer area from baseline to four weeks of treatment. A data set from a recent meta-analysis, based on four RCTs, was applied to the model. Results Treatment with silver dressings for an initial four weeks was found to give a total cost saving (£141.57) compared with treatment with non-silver dressings. In addition, patients treated with silver dressings had a faster wound closure compared with those who had been treated with non-silver dressings. Conclusion The use of silver dressings improves healing time and can lead to overall cost savings. These results can be used to guide healthcare decision makers in evaluating the economic aspects of treatment with silver dressings in hard-to-heal chronic VLUs

    Coral adaptive capacity insufficient to halt global transition of coral reefs into net erosion under climate change

    Get PDF
    This is the final version. Available from Wiley via the DOI in this record. DATA AVAILABILITY STATEMENT: All data submitted to dryad https://doi.org/10.5061/dryad.5hqbz kh9vProjecting the effects of climate change on net reef calcium carbonate production is critical to understanding the future impacts on ecosystem function, but prior estimates have not included corals' natural adaptive capacity to such change. Here we estimate how the ability of symbionts to evolve tolerance to heat stress, or for coral hosts to shuffle to favourable symbionts, and their combination, may influence responses to the combined impacts of ocean warming and acidification under three representative concentration pathway (RCP) emissions scenarios (RCP2.6, RCP4.5 and RCP8.5). We show that symbiont evolution and shuffling, both individually and when combined, favours persistent positive net reef calcium carbonate production. However, our projections of future net calcium carbonate production (NCCP) under climate change vary both spatially and by RCP. For example, 19%–35% of modelled coral reefs are still projected to have net positive NCCP by 2050 if symbionts can evolve increased thermal tolerance, depending on the RCP. Without symbiont adaptive capacity, the number of coral reefs with positive NCCP drops to 9%–13% by 2050. Accounting for both symbiont evolution and shuffling, we project median positive NCPP of coral reefs will still occur under low greenhouse emissions (RCP2.6) in the Indian Ocean, and even under moderate emissions (RCP4.5) in the Pacific Ocean. However, adaptive capacity will be insufficient to halt the transition of coral reefs globally into erosion by 2050 under severe emissions scenarios (RCP8.5).Royal Society Te ApārangiVictoria University of Wellingto

    Seagrass can mitigate negative ocean acidification effects on calcifying algae

    Get PDF
    The ultimate effect that ocean acidification (OA) and warming will have on the physiology of calcifying algae is still largely uncertain. Responses depend on the complex interactions between seawater chemistry, global/local stressors and species-specific physiologies. There is a significant gap regarding the effect that metabolic interactions between coexisting species may have on local seawater chemistry and the concurrent effect of OA. Here, we manipulated CO2 and temperature to evaluate the physiological responses of two common photoautotrophs from shallow tropical marine coastal ecosystems in Brazil: the calcifying alga Halimeda cuneata, and the seagrass Halodule wrightii. We tested whether or not seagrass presence can influence the calcification rate of a widespread and abundant species of Halimeda under OA and warming. Our results demonstrate that under elevated CO2, the high photosynthetic rates of H. wrightii contribute to raise H. cuneata calcification more than two-fold and thus we suggest that H. cuneata populations coexisting with H. wrightii may have a higher resilience to OA conditions. This conclusion supports the more general hypothesis that, in coastal and shallow reef environments, the metabolic interactions between calcifying and non-calcifying organisms are instrumental in providing refuge against OA effects and increasing the resilience of the more OA-susceptible species.E.B. would like to thank the Coordenação de Aperfeiçoamento de Pessoas de Nível Superior (CAPES) for Masters funding. Funding for this project came from the Synergism grant (CNPq 407365/2013-3). We extend our thanks to the Brazil-based Projeto Coral Vivo and its sponsor PetroBras Ambiental for providing the Marine Mesocosm structure and experimental assistance.info:eu-repo/semantics/publishedVersio

    The Minimal Scale Invariant Extension of the Standard Model

    Full text link
    We perform a systematic analysis of an extension of the Standard Model that includes a complex singlet scalar field and is scale invariant at the tree level. We call such a model the Minimal Scale Invariant extension of the Standard Model (MSISM). The tree-level scale invariance of the model is explicitly broken by quantum corrections, which can trigger electroweak symmetry breaking and potentially provide a mechanism for solving the gauge hierarchy problem. Even though the scale invariant Standard Model is not a realistic scenario, the addition of a complex singlet scalar field may result in a perturbative and phenomenologically viable theory. We present a complete classification of the flat directions which may occur in the classical scalar potential of the MSISM. After calculating the one-loop effective potential of the MSISM, we investigate a number of representative scenarios and determine their scalar boson mass spectra, as well as their perturbatively allowed parameter space compatible with electroweak precision data. We discuss the phenomenological implications of these scenarios, in particular, whether they realize explicit or spontaneous CP violation, neutrino masses or provide dark matter candidates. In particular, we find a new minimal scale-invariant model of maximal spontaneous CP violation which can stay perturbative up to Planck-mass energy scales, without introducing an unnaturally large hierarchy in the scalar-potential couplings.Comment: 71 pages, 34 eps figures, numerical error corrected, clarifying comments adde

    Crustose coralline algae can contribute more than corals to coral reef carbonate production

    Get PDF
    This is the final version. Available on open access from Nature Research via the DOI in this recordData availability: Data are available at https://github.com/JayCrlt/CCA_MethodsCode availability: Codes are available at https://github.com/JayCrlt/CCA_MethodsUnderstanding the drivers of net coral reef calcium carbonate production is increasingly important as ocean warming, acidification, and other anthropogenic stressors threaten the maintenance of coral reef structures and the services these ecosystems provide. Despite intense research effort on coral reef calcium carbonate production, the inclusion of a key reef forming/accreting calcifying group, the crustose coralline algae, remains challenging both from a theoretical and practical standpoint. While corals are typically the primary reef builders of contemporary reefs, crustose coralline algae can contribute equally. Here, we combine several sets of data with numerical and theoretical modelling to demonstrate that crustose coralline algae carbonate production can match or even exceed the contribution of corals to reef carbonate production. Despite their importance, crustose coralline algae are often inaccurately recorded in benthic surveys or even entirely missing from coral reef carbonate budgets. We outline several recommendations to improve the inclusion of crustose coralline algae into such carbonate budgets under the ongoing climate crisis.French Embassy - French Related Research Projects (F2RP)Agence Nationale de la Recherche (ANR)Royal Society of New Zealand Te Apārang

    Genomic Organization, Tissue Distribution and Functional Characterization of the Rat Pate Gene Cluster

    Get PDF
    The cysteine rich prostate and testis expressed (Pate) proteins identified till date are thought to resemble the three fingered protein/urokinase-type plasminogen activator receptor proteins. In this study, for the first time, we report the identification, cloning and characterization of rat Pate gene cluster and also determine the expression pattern. The rat Pate genes are clustered on chromosome 8 and their predicted proteins retained the ten cysteine signature characteristic to TFP/Ly-6 protein family. PATE and PATE-F three dimensional protein structure was found to be similar to that of the toxin bucandin. Though Pate gene expression is thought to be prostate and testis specific, we observed that rat Pate genes are also expressed in seminal vesicle and epididymis and in tissues beyond the male reproductive tract. In the developing rats (20–60 day old), expression of Pate genes seem to be androgen dependent in the epididymis and testis. In the adult rat, androgen ablation resulted in down regulation of the majority of Pate genes in the epididymides. PATE and PATE-F proteins were found to be expressed abundantly in the male reproductive tract of rats and on the sperm. Recombinant PATE protein exhibited potent antibacterial activity, whereas PATE-F did not exhibit any antibacterial activity. Pate expression was induced in the epididymides when challenged with LPS. Based on our results, we conclude that rat PATE proteins may contribute to the reproductive and defense functions
    corecore