180 research outputs found

    Two-magnon bound state causes ultrafast thermally induced magnetisation switching.

    Get PDF
    There has been much interest recently in the discovery of thermally induced magnetisation switching using femtosecond laser excitation, where a ferrimagnetic system can be switched deterministically without an applied magnetic field. Experimental results suggest that the reversal occurs due to intrinsic material properties, but so far the microscopic mechanism responsible for reversal has not been identified. Using computational and analytic methods we show that the switching is caused by the excitation of two-magnon bound states, the properties of which are dependent on material factors. This discovery allows us to accurately predict the onset of switching and the identification of this mechanism will allow new classes of materials to be identified or designed for memory devices in the THz regime

    Control over phase separation and nucleation using a laser-tweezing potential

    Get PDF
    Control over the nucleation of new phases is highly desirable but elusive. Even though there is a long history of crystallization engineering by varying physicochemical parameters, controlling which polymorph crystallizes or whether a molecule crystallizes or forms an amorphous precipitate is still a poorly understood practice. Although there are now numerous examples of control using laser-induced nucleation, the absence of physical understanding is preventing progress. Here we show that the proximity of a liquid–liquid critical point or the corresponding binodal line can be used by a laser-tweezing potential to induce concentration gradients. A simple theoretical model shows that the stored electromagnetic energy of the laser beam produces a free-energy potential that forces phase separation or triggers the nucleation of a new phase. Experiments in a liquid mixture using a low-power laser diode confirm the effect. Phase separation and nucleation using a laser-tweezing potential explains the physics behind non-photochemical laser-induced nucleation and suggests new ways of manipulating matter

    An extracellular steric seeding mechanism for Eph-ephrin signaling platform assembly

    Get PDF
    Erythropoetin-producing hepatoma (Eph) receptors are cell-surface protein tyrosine kinases mediating cell-cell communication. Upon activation, they form signaling clusters. We report crystal structures of the full ectodomain of human EphA2 (eEphA2) both alone and in complex with the receptor-binding domain of the ligand ephrinA5 (ephrinA5 RBD). Unliganded eEphA2 forms linear arrays of staggered parallel receptors involving two patches of residues conserved across A-class Ephs. eEphA2-ephrinA5 RBD forms a more elaborate assembly, whose interfaces include the same conserved regions on eEphA2, but rearranged to accommodate ephrinA5 RBD. Cell-surface expression of mutant EphA2s showed that these interfaces are critical for localization at cell-cell contacts and activation-dependent degradation. Our results suggest a 'nucleation' mechanism whereby a limited number of ligand-receptor interactions 'seed' an arrangement of receptors which can propagate into extended signaling arrays

    Ultrafast heating as a sufficient stimulus for magnetization reversal in a ferrimagnet.

    Get PDF
    The question of how, and how fast, magnetization can be reversed is a topic of great practical interest for the manipulation and storage of magnetic information. It is generally accepted that magnetization reversal should be driven by a stimulus represented by time-non-invariant vectors such as a magnetic field, spin-polarized electric current, or cross-product of two oscillating electric fields. However, until now it has been generally assumed that heating alone, not represented as a vector at all, cannot result in a deterministic reversal of magnetization, although it may assist this process. Here we show numerically and demonstrate experimentally a novel mechanism of deterministic magnetization reversal in a ferrimagnet driven by an ultrafast heating of the medium resulting from the absorption of a sub-picosecond laser pulse without the presence of a magnetic field

    Aortic root surgery in septuagenarians: impact of different surgical techniques

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To evaluate the impact and safety of different surgical techniques for aortic root replacement (ARR) on early and late morbidity and mortality in septuagenarians undergoing ARR.</p> <p>Methods</p> <p>Ninety-five patients (73.8 ± 3.2 years) were operated and divided into three groups according to the aortic root procedure; MECH-group (n = 51) patients with a mechanical composite graft, BIO-group (n = 22) patients with a customized biological composite graft, and REIMPL-group (n = 22) patients with a valve sparing aortic root reimplantation (David I). In 42.1% (40/95) of these patients the aortic arch was replaced. Follow-up was completed in 95.2% (79/83) of in-hospital survivors.</p> <p>Results</p> <p>Hospital mortality was 12.6% (12/95) in the entire population (MECH. 15.7% (8/51), BIO 19.7% (4/22), REIMPL 0% (0/22); p = 0.004). Two patients died intraoperatively. The most frequent postoperative complications were prolonged mechanical ventilation ((>48 h) in 16.8% (16/93) (MECH. 7% (7/51), BIO 36.4% (8/22), REIMPL 4.5% (1/22); p = 0.013) and rethoracotomy for postoperative bleeding in 12.6% (12/95) (MECH. 12% (6/51), BIO 22.7% (5/22), REIMPL 4.5% (1/22); p = 0.19). Nineteen late deaths (22.9%) (19/83) (MECH 34.8% (15/43), BIO 16.7% (3/18), REIMPL 4.5% (1/22); p = 0.012) occurred during a mean follow-up of 41 ± 42 months (MECH 48 ± 48 months, BIO 25 ± 37 months, REIMPL 40 ± 28 months, p = 0.028). Postoperative NYHA class decreased significantly (p = 0.017) and performance status (p = 0.027) increased for the entire group compared to preoperative values.</p> <p>Conclusion</p> <p>Our data indicate that valve sparing aortic root reimplantation is safe and effective in septuagenarians, and is associated with low early and late morbidity and mortality.</p

    Artificial Intelligence in Education

    Get PDF
    Artificial Intelligence (AI) technologies have been researched in educational contexts for more than 30 years (Woolf 1988; Cumming and McDougall 2000; du Boulay 2016). More recently, commercial AI products have also entered the classroom. However, while many assume that Artificial Intelligence in Education (AIED) means students taught by robot teachers, the reality is more prosaic yet still has the potential to be transformative (Holmes et al. 2019). This chapter introduces AIED, an approach that has so far received little mainstream attention, both as a set of technologies and as a field of inquiry. It discusses AIED’s AI foundations, its use of models, its possible future, and the human context. It begins with some brief examples of AIED technologies

    Transglutaminase 6: a protein associated with central nervous system development and motor function.

    Get PDF
    Transglutaminases (TG) form a family of enzymes that catalyse various post-translational modifications of glutamine residues in proteins and peptides including intra- and intermolecular isopeptide bond formation, esterification and deamidation. We have characterized a novel member of the mammalian TG family, TG6, which is expressed in a human carcinoma cell line with neuronal characteristics and in mouse brain. Besides full-length protein, alternative splicing results in a short variant lacking the second β-barrel domain in man and a variant with truncated β-sandwich domain in mouse. Biochemical data show that TG6 is allosterically regulated by Ca(2+) and guanine nucleotides. Molecular modelling indicates that TG6 could have Ca(2+) and GDP-binding sites related to those of TG3 and TG2, respectively. Localization of mRNA and protein in the mouse identified abundant expression of TG6 in the central nervous system. Analysis of its temporal and spatial pattern of induction in mouse development indicates an association with neurogenesis. Neuronal expression of TG6 was confirmed by double-labelling of mouse forebrain cells with cell type-specific markers. Induction of differentiation in mouse Neuro 2a cells with NGF or dibutyryl cAMP is associated with an upregulation of TG6 expression. Familial ataxia has recently been linked to mutations in the TGM6 gene. Autoantibodies to TG6 were identified in immune-mediated ataxia in patients with gluten sensitivity. These findings suggest a critical role for TG6 in cortical and cerebellar neurons

    Jet energy measurement with the ATLAS detector in proton-proton collisions at root s=7 TeV

    Get PDF
    The jet energy scale and its systematic uncertainty are determined for jets measured with the ATLAS detector at the LHC in proton-proton collision data at a centre-of-mass energy of √s = 7TeV corresponding to an integrated luminosity of 38 pb-1. Jets are reconstructed with the anti-kt algorithm with distance parameters R=0. 4 or R=0. 6. Jet energy and angle corrections are determined from Monte Carlo simulations to calibrate jets with transverse momenta pT≥20 GeV and pseudorapidities {pipe}η{pipe}<4. 5. The jet energy systematic uncertainty is estimated using the single isolated hadron response measured in situ and in test-beams, exploiting the transverse momentum balance between central and forward jets in events with dijet topologies and studying systematic variations in Monte Carlo simulations. The jet energy uncertainty is less than 2. 5 % in the central calorimeter region ({pipe}η{pipe}<0. 8) for jets with 60≤pT<800 GeV, and is maximally 14 % for pT<30 GeV in the most forward region 3. 2≤{pipe}η{pipe}<4. 5. The jet energy is validated for jet transverse momenta up to 1 TeV to the level of a few percent using several in situ techniques by comparing a well-known reference such as the recoiling photon pT, the sum of the transverse momenta of tracks associated to the jet, or a system of low-pT jets recoiling against a high-pT jet. More sophisticated jet calibration schemes are presented based on calorimeter cell energy density weighting or hadronic properties of jets, aiming for an improved jet energy resolution and a reduced flavour dependence of the jet response. The systematic uncertainty of the jet energy determined from a combination of in situ techniques is consistent with the one derived from single hadron response measurements over a wide kinematic range. The nominal corrections and uncertainties are derived for isolated jets in an inclusive sample of high-pT jets. Special cases such as event topologies with close-by jets, or selections of samples with an enhanced content of jets originating from light quarks, heavy quarks or gluons are also discussed and the corresponding uncertainties are determined. © 2013 CERN for the benefit of the ATLAS collaboration

    The degree of segmental aneuploidy measured by total copy number abnormalities predicts survival and recurrence in superficial gastroesophageal adenocarcinoma

    Get PDF
    Background: Prognostic biomarkers are needed for superficial gastroesophageal adenocarcinoma (EAC) to predict clinical outcomes and select therapy. Although recurrent mutations have been characterized in EAC, little is known about their clinical and prognostic significance. Aneuploidy is predictive of clinical outcome in many malignancies but has not been evaluated in superficial EAC. Methods: We quantified copy number changes in 41 superficial EAC using Affymetrix SNP 6.0 arrays. We identified recurrent chromosomal gains and losses and calculated the total copy number abnormality (CNA) count for each tumor as a measure of aneuploidy. We correlated CNA count with overall survival and time to first recurrence in univariate and multivariate analyses. Results: Recurrent segmental gains and losses involved multiple genes, including: HER2, EGFR, MET, CDK6, KRAS (recurrent gains); and FHIT, WWOX, CDKN2A/B, SMAD4, RUNX1 (recurrent losses). There was a 40-fold variation in CNA count across all cases. Tumors with the lowest and highest quartile CNA count had significantly better overall survival (p = 0.032) and time to first recurrence (p = 0.010) compared to those with intermediate CNA counts. These associations persisted when controlling for other prognostic variables. Significance: SNP arrays facilitate the assessment of recurrent chromosomal gain and loss and allow high resolution, quantitative assessment of segmental aneuploidy (total CNA count). The non-monotonic association of segmental aneuploidy with survival has been described in other tumors. The degree of aneuploidy is a promising prognostic biomarker in a potentially curable form of EAC. © 2014 Davison et al

    Vascular regrowth following photodynamic therapy in the chicken embryo chorioallantoic membrane

    Get PDF
    Photodynamic therapy (PDT) induces damage to the endothelium, which can lead to increased vascular permeability and, under intensive PDT conditions, even to platelet aggregation, vasoconstriction, and blood flow stasis. Eventually, ischemia, hypoxia, and inflammation can occur, resulting in angiogenesis. We studied the sequence of the vascular events after Visudyne®-PDT in the chicken chorioallantoic membrane (CAM) at day 11 of development. Using epi-fluorescence microscopy, we monitored the regrowth of capillaries in the PDT treated area. Immediately after irradiation, the treatment resulted in blood flow arrest. And 24 h post PDT, sprouting of new blood vessels was observed at the edge of the PDT zone. Neovessels looping out from the edge of the PDT zone gave rise to specialized endothelial tip structures guiding the vessels towards the center of the treated area. At 48 h almost all of the treated area was repopulated with functional but morphologically altered vasculature. These observations also showed reperfusion of some of the vessels that had been closed by the PDT treatment. CAM samples were immunohistochemically stained for Ki-67 showing proliferation of endothelial cells in the PDT area. Also, several markers of immature and angiogenic blood vessels, such as αVβ3-integrin, vimentin and galectin-1, were found to be enhanced in the PDT area, while the endothelial maturation marker intercellular adhesion molecule (ICAM)-1 was found to be suppressed. These results demonstrate that the new vascular bed is formed by both neo-angiogenesis and reperfusion of existing vessels. Both the quantitative real-time RT–PCR profile and the response to pharmacological treatment with Avastin®, an inhibitor of angiogenesis, suggest that angiogenesis occurs after PDT. The observed molecular profiling results and the kinetics of gene regulation may enable optimizing combination therapies involving PDT for treatment of cancer and other diseases
    corecore