879 research outputs found

    Topographic microclimates drive microhabitat associations at the range margin of a butterfly

    Get PDF
    Journal Article© 2014 The Authors. Ecography published by Nordic Society Oikos.The habitat associations of individuals underpin the dynamics of species distributions. Broad-scale gradients in climate can alter habitat associations across species' geographic ranges, but topographic heterogeneity creates local microclimates which could generate variation in habitat use at finer spatial scales. We examined the selection of microhabitats for egg-laying by populations of a thermally-constrained butterfly, the skipper Hesperia comma, across 16 sites with different regional temperatures and topographic microclimates. Using models of thermal microclimate, we examined how the association between eggs and warm bare ground microhabitats varied with ambient temperature, and predicted bare ground associations in 287 existing H. comma populations, to investigate the relative impacts of regional temperatures and topographic microclimates on microhabitat use. Eggs were most strongly associated with bare ground in relatively cool sites, indicating climate-driven changes in microhabitat use. The majority of temperature variation between study sites was attributable to topographic microclimates rather than regional temperature differences, such that changes in microhabitat associations occurred principally between north- and south-facing slopes within the same region. Predicted microhabitat associations across the UK distribution of H. comma showed that, due to the large temperature differences generated by topography, most of the between-population variation in microhabitat use occurs locally within 5 km grid squares, with a smaller proportion occurring at a regional level between 5 km squares. Our findings show how microclimatic variation generated by topography alters the habitat associations of populations at fine spatial scales, suggesting that microclimate-driven changes in habitat suitability could shape species' distribution dynamics and their responses to environmental change.NERCUniversity of Exete

    Active Management of Protected Areas Enhances Metapopulation Expansion Under Climate Change

    Get PDF
    Journal ArticleCopyright © 2013 The Authors. Conservation Letters published by Wiley Periodicals, Inc.There is a need to adapt biodiversity conservation to climate change, but few empirical studies are available to guide decision-making. Existing networks of protected areas (PAs) have been preferentially colonized during species' range expansions, but this could be due to their original habitat quality and/or to ongoing management activity. Here, we examine how PA status and active conservation management have influenced the range expansion of a butterfly Hesperia comma through fragmented landscapes. PAs under active conservation management were over three times more likely to be colonized than unprotected, unmanaged sites of the same basic vegetation type. Conservation action also increased the survival rate of existing populations inside and outside of PAs. We conclude that PAs facilitate range expansions by preventing habitat degradation and encouraging active conservation that improves habitat quality, and that conservation interventions on nondesignated sites also have a role to play in adapting conservation to climate change.NERCUniversity of Exete

    Assessing the impact of the threatened crucian carp (Carassius carassius) on pond invertebrate diversity: A comparison of conventional and molecular tools

    Get PDF
    Fishes stocked for recreation and angling can damage freshwater habitats and negatively impact biodiversity. The pond-associated crucian carp (Carassius carassius) is rare across Europe and is stocked for conservation management in England, but its impacts on pond biota are understudied. Freshwater invertebrates contribute substantially to aquatic biodiversity, encompassing many rare and endemic species, but their small size and high abundance complicate their assessment. Practitioners have employed sweep-netting and kick-sampling with microscopy (morphotaxonomy), but specimen size/quality and experience can bias identification. DNA and environmental DNA (eDNA) metabarcoding offer alternative means of invertebrate assessment. We compared invertebrate diversity in ponds (N = 18) with and without crucian carp using morphotaxonomic identification, DNA metabarcoding and eDNA metabarcoding. Five 2 L water samples and 3 min sweep-net samples were collected at each pond. Inventories produced by morphotaxonomic identification of netted samples, DNA metabarcoding of bulk tissue samples and eDNA metabarcoding of water samples were compared. Alpha diversity was greatest with DNA or eDNA metabarcoding, depending on whether standard or unbiased methods were considered. DNA metabarcoding reflected morphotaxonomic identification, whereas eDNA metabarcoding produced markedly different communities. These complementary tools should be combined for comprehensive invertebrate assessment. Crucian carp presence minimally reduced alpha diversity in ponds, but positively influenced beta diversity through taxon turnover (i.e., ponds with crucian carp contained different invertebrates to fishless ponds). Crucian carp presence contributes to landscape-scale invertebrate diversity, supporting continued conservation management in England. Our results show that molecular tools can enhance freshwater invertebrate assessment and facilitate development of more accurate and ecologically effective pond management strategies

    Novel integrative genomic tool for interrogating lithium response in bipolar disorder

    Get PDF
    We developed a novel integrative genomic tool called GRANITE (Genetic Regulatory Analysis of Networks Investigational Tool Environment) that can effectively analyze large complex data sets to generate interactive networks. GRANITE is an open-source tool and invaluable resource for a variety of genomic fields. Although our analysis is confined to static expression data, GRANITE has the capability of evaluating time-course data and generating interactive networks that may shed light on acute versus chronic treatment, as well as evaluating dose response and providing insight into mechanisms that underlie therapeutic versus sub-therapeutic doses or toxic doses. As a proof-of-concept study, we investigated lithium (Li) response in bipolar disorder (BD). BD is a severe mood disorder marked by cycles of mania and depression. Li is one of the most commonly prescribed and decidedly effective treatments for many patients (responders), although its mode of action is not yet fully understood, nor is it effective in every patient (non-responders). In an in vitro study, we compared vehicle versus chronic Li treatment in patient-derived lymphoblastoid cells (LCLs) (derived from either responders or non-responders) using both microRNA (miRNA) and messenger RNA gene expression profiling. We present both Li responder and non-responder network visualizations created by our GRANITE analysis in BD. We identified by network visualization that the Let-7 family is consistently downregulated by Li in both groups where this miRNA family has been implicated in neurodegeneration, cell survival and synaptic development. We discuss the potential of this analysis for investigating treatment response and even providing clinicians with a tool for predicting treatment response in their patients, as well as for providing the industry with a tool for identifying network nodes as targets for novel drug discovery

    Human α2β1HI CD133+VE epithelial prostate stem cells express low levels of active androgen receptor

    Get PDF
    Stem cells are thought to be the cell of origin in malignant transformation in many tissues, but their role in human prostate carcinogenesis continues to be debated. One of the conflicts with this model is that cancer stem cells have been described to lack androgen receptor (AR) expression, which is of established importance in prostate cancer initiation and progression. We re-examined the expression patterns of AR within adult prostate epithelial differentiation using an optimised sensitive and specific approach examining transcript, protein and AR regulated gene expression. Highly enriched populations were isolated consisting of stem (α(2)β(1)(HI) CD133(+VE)), transiently amplifying (α(2)β(1)(HI) CD133(-VE)) and terminally differentiated (α(2)β(1)(LOW) CD133(-VE)) cells. AR transcript and protein expression was confirmed in α(2)β(1)(HI) CD133(+VE) and CD133(-VE) progenitor cells. Flow cytometry confirmed that median (±SD) fraction of cells expressing AR were 77% (±6%) in α(2)β(1)(HI) CD133(+VE) stem cells and 68% (±12%) in α(2)β(1)(HI) CD133(-VE) transiently amplifying cells. However, 3-fold lower levels of total AR protein expression (peak and median immunofluorescence) were present in α(2)β(1)(HI) CD133(+VE) stem cells compared with differentiated cells. This finding was confirmed with dual immunostaining of prostate sections for AR and CD133, which again demonstrated low levels of AR within basal CD133(+VE) cells. Activity of the AR was confirmed in prostate progenitor cells by the expression of low levels of the AR regulated genes PSA, KLK2 and TMPRSS2. The confirmation of AR expression in prostate progenitor cells allows integration of the cancer stem cell theory with the established models of prostate cancer initiation based on a functional AR. Further study of specific AR functions in prostate stem and differentiated cells may highlight novel mechanisms of prostate homeostasis and insights into tumourigenesis

    The Epstein-Barr Virus G-Protein-Coupled Receptor Contributes to Immune Evasion by Targeting MHC Class I Molecules for Degradation

    Get PDF
    Epstein-Barr virus (EBV) is a human herpesvirus that persists as a largely subclinical infection in the vast majority of adults worldwide. Recent evidence indicates that an important component of the persistence strategy involves active interference with the MHC class I antigen processing pathway during the lytic replication cycle. We have now identified a novel role for the lytic cycle gene, BILF1, which encodes a glycoprotein with the properties of a constitutive signaling G-protein-coupled receptor (GPCR). BILF1 reduced the levels of MHC class I at the cell surface and inhibited CD8+ T cell recognition of endogenous target antigens. The underlying mechanism involves physical association of BILF1 with MHC class I molecules, an increased turnover from the cell surface, and enhanced degradation via lysosomal proteases. The BILF1 protein of the closely related CeHV15 c1-herpesvirus of the Rhesus Old World primate (80% amino acid sequence identity) downregulated surface MHC class I similarly to EBV BILF1. Amongst the human herpesviruses, the GPCR encoded by the ORF74 of the KSHV c2-herpesvirus is most closely related to EBV BILF1 (15% amino acid sequence identity) but did not affect levels of surface MHC class I. An engineered mutant of BILF1 that was unable to activate G protein signaling pathways retained the ability to downregulate MHC class I, indicating that the immune-modulating and GPCR-signaling properties are two distinct functions of BILF1. These findings extend our understanding of the normal biology of an important human pathogen. The discovery of a third EBV lytic cycle gene that cooperates to interfere with MHC class I antigen processing underscores the importance of the need for EBV to be able to evade CD8+ T cell responses during the lytic replication cycle, at a time when such a large number of potential viral targets are expressed

    Assessing the impact of the threatened crucian carp (Carassius carassius) on pond invertebrate diversity: A comparison of conventional and molecular tools

    Get PDF
    Fishes stocked for recreation and angling can damage freshwater habitats and negatively impact biodiversity. The pond‐associated crucian carp (Carassius carassius) is rare across Europe and is stocked for conservation management in England, but its impacts on pond biota are understudied. Freshwater invertebrates contribute substantially to aquatic biodiversity, encompassing many rare and endemic species, but their small size and high abundance complicate their assessment. Practitioners have employed sweep‐netting and kick‐sampling with microscopy (morphotaxonomy), but specimen size/quality and experience can bias identification. DNA and environmental DNA (eDNA) metabarcoding offer alternative means of invertebrate assessment. We compared invertebrate diversity in ponds (N = 18) with and without crucian carp using morphotaxonomic identification, DNA metabarcoding and eDNA metabarcoding. Five 2 L water samples and 3 min sweep‐net samples were collected at each pond. Inventories produced by morphotaxonomic identification of netted samples, DNA metabarcoding of bulk tissue samples and eDNA metabarcoding of water samples were compared. Alpha diversity was greatest with DNA or eDNA metabarcoding, depending on whether standard or unbiased methods were considered. DNA metabarcoding reflected morphotaxonomic identification, whereas eDNA metabarcoding produced markedly different communities. These complementary tools should be combined for comprehensive invertebrate assessment. Crucian carp presence minimally reduced alpha diversity in ponds, but positively influenced beta diversity through taxon turnover (i.e., ponds with crucian carp contained different invertebrates to fishless ponds). Crucian carp presence contributes to landscape‐scale invertebrate diversity, supporting continued conservation management in England. Our results show that molecular tools can enhance freshwater invertebrate assessment and facilitate development of more accurate and ecologically effective pond management strategies

    The geography of recent genetic ancestry across Europe

    Get PDF
    The recent genealogical history of human populations is a complex mosaic formed by individual migration, large-scale population movements, and other demographic events. Population genomics datasets can provide a window into this recent history, as rare traces of recent shared genetic ancestry are detectable due to long segments of shared genomic material. We make use of genomic data for 2,257 Europeans (the POPRES dataset) to conduct one of the first surveys of recent genealogical ancestry over the past three thousand years at a continental scale. We detected 1.9 million shared genomic segments, and used the lengths of these to infer the distribution of shared ancestors across time and geography. We find that a pair of modern Europeans living in neighboring populations share around 10-50 genetic common ancestors from the last 1500 years, and upwards of 500 genetic ancestors from the previous 1000 years. These numbers drop off exponentially with geographic distance, but since genetic ancestry is rare, individuals from opposite ends of Europe are still expected to share millions of common genealogical ancestors over the last 1000 years. There is substantial regional variation in the number of shared genetic ancestors: especially high numbers of common ancestors between many eastern populations likely date to the Slavic and/or Hunnic expansions, while much lower levels of common ancestry in the Italian and Iberian peninsulas may indicate weaker demographic effects of Germanic expansions into these areas and/or more stably structured populations. Recent shared ancestry in modern Europeans is ubiquitous, and clearly shows the impact of both small-scale migration and large historical events. Population genomic datasets have considerable power to uncover recent demographic history, and will allow a much fuller picture of the close genealogical kinship of individuals across the world.Comment: Full size figures available from http://www.eve.ucdavis.edu/~plralph/research.html; or html version at http://ralphlab.usc.edu/ibd/ibd-paper/ibd-writeup.xhtm

    Advanced optical imaging in living embryos

    Get PDF
    Developmental biology investigations have evolved from static studies of embryo anatomy and into dynamic studies of the genetic and cellular mechanisms responsible for shaping the embryo anatomy. With the advancement of fluorescent protein fusions, the ability to visualize and comprehend how thousands to millions of cells interact with one another to form tissues and organs in three dimensions (xyz) over time (t) is just beginning to be realized and exploited. In this review, we explore recent advances utilizing confocal and multi-photon time-lapse microscopy to capture gene expression, cell behavior, and embryo development. From choosing the appropriate fluorophore, to labeling strategy, to experimental set-up, and data pipeline handling, this review covers the various aspects related to acquiring and analyzing multi-dimensional data sets. These innovative techniques in multi-dimensional imaging and analysis can be applied across a number of fields in time and space including protein dynamics to cell biology to morphogenesis

    Membrane Potential Controls Adipogenic and Osteogenic Differentiation of Mesenchymal Stem Cells

    Get PDF
    Background: Control of stem cell behavior is a crucial aspect of developmental biology and regenerative medicine. While the functional role of electrophysiology in stem cell biology is poorly understood, it has become clear that endogenous ion flows represent a powerful set of signals by means of which cell proliferation, differentiation, and migration can be controlled in regeneration and embryonic morphogenesis. Methodology/Principal Findings: We examined the membrane potential (Vmem) changes exhibited by human mesenchymal stem cells (hMSCs) undergoing adipogenic (AD) and osteogenic (OS) differentiation, and uncovered a characteristic hyperpolarization of differentiated cells versus undifferentiated cells. Reversal of the progressive polarization via pharmacological modulation of transmembrane potential revealed that depolarization of hMSCs prevents differentiation. In contrast, treatment with hyperpolarizing reagents upregulated osteogenic markers. Conclusions/Significance: Taken together, these data suggest that the endogenous hyperpolarization is a functiona
    corecore