1,035 research outputs found

    Two- and three-point functions in two-dimensional Landau-gauge Yang-Mills theory: Continuum results

    Full text link
    We investigate the Dyson-Schwinger equations for the gluon and ghost propagators and the ghost-gluon vertex of Landau-gauge gluodynamics in two dimensions. While this simplifies some aspects of the calculations as compared to three and four dimensions, new complications arise due to a mixing of different momentum regimes. As a result, the solutions for the propagators are more sensitive to changes in the three-point functions and the ansaetze used for them at the leading order in a vertex a expansion. Here, we therefore go beyond this common truncation by including the ghost-gluon vertex self-consistently for the first time, while using a model for the three-gluon vertex which reproduces the known infrared asymptotics and the zeros at intermediate momenta as observed on the lattice. A separate computation of the three-gluon vertex from the results is used to confirm the stability of this behavior a posteriori. We also present further arguments for the absence of the decoupling solution in two dimensions. Finally, we show how in general the infrared exponent kappa of the scaling solutions in two, three and four dimensions can be changed by allowing an angle dependence and thus an essential singularity of the ghost-gluon vertex in the infrared.Comment: 24 pages; added references, improved choices of parameters for vertex models; identical to version published in JHE

    Gene expression drives the evolution of dominance.

    Get PDF
    Dominance is a fundamental concept in molecular genetics and has implications for understanding patterns of genetic variation, evolution, and complex traits. However, despite its importance, the degree of dominance in natural populations is poorly quantified. Here, we leverage multiple mating systems in natural populations of Arabidopsis to co-estimate the distribution of fitness effects and dominance coefficients of new amino acid changing mutations. We find that more deleterious mutations are more likely to be recessive than less deleterious mutations. Further, this pattern holds across gene categories, but varies with the connectivity and expression patterns of genes. Our work argues that dominance arises as a consequence of the functional importance of genes and their optimal expression levels

    An A4 flavor model for quarks and leptons in warped geometry

    Get PDF
    We propose a spontaneous A4 flavor symmetry breaking scheme implemented in a warped extra dimensional setup to explain the observed pattern of quark and lepton masses and mixings. The main advantages of this choice are the explanation of fermion mass hierarchies by wave function overlaps, the emergence of tribimaximal neutrino mixing and zero quark mixing at the leading order and the absence of tree-level gauge mediated flavor violations. Quark mixing is induced by the presence of bulk flavons, which allow for cross-brane interactions and a cross-talk between the quark and neutrino sectors, realizing the spontaneous symmetry breaking pattern A4 --> nothing first proposed in [X.G.\,He, Y.Y.\,Keum, R.R.\,Volkas, JHEP{0604}, 039 (2006)]. We show that the observed quark mixing pattern can be explained in a rather economical way, including the CP violating phase, with leading order cross-interactions, while the observed difference between the smallest CKM entries V_{ub} and V_{td} must arise from higher order corrections. We briefly discuss bounds on the Kaluza-Klein scale implied by flavor changing neutral current processes in our model and show that the residual little CP problem is milder than in flavor anarchic models.Comment: 34 pages, 2 figures; version published in JHE

    Many-body Landau-Zener dynamics in coupled 1D Bose liquids

    Full text link
    The Landau-Zener model of a quantum mechanical two-level system driven with a linearly time dependent detuning has served over decades as a textbook paradigm of quantum dynamics. In their seminal work [L. D. Landau, Physik. Z. Sowjet. 2, 46 (1932); C. Zener, Proc. Royal Soc. London 137, 696 (1932)], Landau and Zener derived a non-perturbative prediction for the transition probability between two states, which often serves as a reference point for the analysis of more complex systems. A particularly intriguing question is whether that framework can be extended to describe many-body quantum dynamics. Here we report an experimental and theoretical study of a system of ultracold atoms, offering a direct many-body generalization of the Landau-Zener problem. In a system of pairwise tunnel-coupled 1D Bose liquids we show how tuning the correlations of the 1D gases, the tunnel coupling between the tubes and the inter-tube interactions strongly modify the original Landau-Zener picture. The results are explained using a mean-field description of the inter-tube condensate wave-function, coupled to the low-energy phonons of the 1D Bose liquid.Comment: 13 pages, 10 figures

    Linear approaches to intramolecular Förster Resonance Energy Transfer probe measurements for quantitative modeling

    Get PDF
    Numerous unimolecular, genetically-encoded Forster Resonance Energy Transfer (FRET) probes for monitoring biochemical activities in live cells have been developed over the past decade. As these probes allow for collection of high frequency, spatially resolved data on signaling events in live cells and tissues, they are an attractive technology for obtaining data to develop quantitative, mathematical models of spatiotemporal signaling dynamics. However, to be useful for such purposes the observed FRET from such probes should be related to a biological quantity of interest through a defined mathematical relationship, which is straightforward when this relationship is linear, and can be difficult otherwise. First, we show that only in rare circumstances is the observed FRET linearly proportional to a biochemical activity. Therefore in most cases FRET measurements should only be compared either to explicitly modeled probes or to concentrations of products of the biochemical activity, but not to activities themselves. Importantly, we find that FRET measured by standard intensity-based, ratiometric methods is inherently non-linear with respect to the fraction of probes undergoing FRET. Alternatively, we find that quantifying FRET either via (1) fluorescence lifetime imaging (FLIM) or (2) ratiometric methods where the donor emission intensity is divided by the directly-excited acceptor emission intensity (denoted R<sub>alt</sub>) is linear with respect to the fraction of probes undergoing FRET. This linearity property allows one to calculate the fraction of active probes based on the FRET measurement. Thus, our results suggest that either FLIM or ratiometric methods based on R<sub>alt</sub> are the preferred techniques for obtaining quantitative data from FRET probe experiments for mathematical modeling purpose

    Flavourful Production at Hadron Colliders

    Full text link
    We ask what new states may lie at or below the TeV scale, with sizable flavour-dependent couplings to light quarks, putting them within reach of hadron colliders via resonant production, or in association with Standard Model states. In particular, we focus on the compatibility of such states with stringent flavour-changing neutral current and electric-dipole moment constraints. We argue that the broadest and most theoretically plausible flavour structure of the new couplings is that they are hierarchical, as are Standard Model Yukawa couplings, although the hierarchical pattern may well be different. We point out that, without the need for any more elaborate or restrictive structure, new scalars with "diquark" couplings to standard quarks are particularly immune to existing constraints, and that such scalars may arise within a variety of theoretical paradigms. In particular, there can be substantial couplings to a pair of light quarks or to one light and one heavy quark. For example, the latter possibility may provide a flavour-safe interpretation of the asymmetry in top quark production observed at the Tevatron. We thereby motivate searches for diquark scalars at the Tevatron and LHC, and argue that their discovery represents one of our best chances for new insight into the Flavour Puzzle of the Standard Model.Comment: 18 pp., 8 figures, references adde

    Flavour in supersymmetry: horizontal symmetries or wave function renormalisation

    Get PDF
    We compare theoretical and experimental predictions of two main classes of models addressing fermion mass hierarchies and flavour changing neutral currents (FCNC) effects in supersymmetry: Froggatt-Nielsen (FN) U(1) gauged flavour models and Nelson-Strassler/extra dimensional models with hierarchical wave functions for the families. We show that whereas the two lead to identical predictions in the fermion mass matrices, the second class generates a stronger suppression of FCNC effects. We prove that, whereas at first sight the FN setup is more constrained due to anomaly cancelation conditions, imposing unification of gauge couplings in the second setup generates conditions which precisely match the mixed anomaly constraints in the FN setup. Finally, we provide an economical extra dimensional realisation of the hierarchical wave functions scenario in which the leptonic FCNC can be efficiently suppressed due to the strong coupling (CFT) origin of the electron mass.Comment: 23 page

    Formation of Complex and Unstable Chromosomal Translocations in Yeast

    Get PDF
    Genome instability, associated with chromosome breakage syndromes and most human cancers, is still poorly understood. In the yeast Saccharomyces cerevisiae, numerous genes with roles in the preservation of genome integrity have been identified. DNA-damage-checkpoint-deficient yeast cells that lack Sgs1, a RecQ-like DNA helicase related to the human Bloom's-syndrome-associated helicase BLM, show an increased rate of genome instability, and we have previously shown that they accumulate recurring chromosomal translocations between three similar genes, CAN1, LYP1 and ALP1. Here, the chromosomal location, copy number and sequence similarity of the translocation targets ALP1 and LYP1 were altered to gain insight into the formation of complex translocations. Among 844 clones with chromosomal rearrangements, 93 with various types of simple and complex translocations involving CAN1, LYP1 and ALP1 were identified. Breakpoint sequencing and mapping showed that the formation of complex translocation types is strictly dependent on the location of the initiating DNA break and revealed that complex translocations arise via a combination of interchromosomal translocation and template-switching, as well as from unstable dicentric intermediates. Template-switching occurred between sequences on the same chromosome, but was inhibited if the genes were transferred to different chromosomes. Unstable dicentric translocations continuously gave rise to clones with multiple translocations in various combinations, reminiscent of intratumor heterogeneity in human cancers. Base substitutions and evidence of DNA slippage near rearrangement breakpoints revealed that translocation formation can be accompanied by point mutations, and their presence in different translocation types within the same clone provides evidence that some of the different translocation types are derived from each other rather than being formed de novo. These findings provide insight into eukaryotic genome instability, especially the formation of translocations and the sources of intraclonal heterogeneity, both of which are often associated with human cancers

    The diversification of Heliconius butterflies: what have we learned in 150 years?

    Get PDF
    Research into Heliconius butterflies has made a significant contribution to evolutionary biology. Here, we review our understanding of the diversification of these butterflies, covering recent advances and a vast foundation of earlier work. Whereas no single group of organisms can be sufficient for understanding life's diversity, after years of intensive study, research into Heliconius has addressed a wide variety of evolutionary questions. We first discuss evidence for widespread gene flow between Heliconius species and what this reveals about the nature of species. We then address the evolution and diversity of warning patterns, both as the target of selection and with respect to their underlying genetic basis. The identification of major genes involved in mimetic shifts, and homology at these loci between distantly related taxa, has revealed a surprising predictability in the genetic basis of evolution. In the final sections, we consider the evolution of warning patterns, and Heliconius diversity more generally, within a broader context of ecological and sexual selection. We consider how different traits and modes of selection can interact and influence the evolution of reproductive isolation.RMM is funded by a Junior Research Fellowship at King’s College, Cambridge. KMK is supported by the Balfour Studentship, University of Cambridge, SHMa by a Research Fellowship at St John's College, Cambridge, and SHMo by a Research Fellowship from the Royal Commission for the Exhibition of 1851. Our work on Heliconius has been additionally supported by the Agence Nationale de la Recherche (France), the Biology and Biotechnology Research Council (UK), the British Ecological Society, the European Research Council, the Natural Environment Research Council (UK), and the Smithsonian Tropical Research Institute.This is the author accepted manuscript. The final version is available from Wiley via http://dx.doi.org/10.1111/jeb.1267

    FCNC Effects in a Minimal Theory of Fermion Masses

    Get PDF
    As a minimal theory of fermion masses we extend the SM by heavy vectorlike fermions, with flavor-anarchical Yukawa couplings, that mix with chiral fermions such that small SM Yukawa couplings arise from small mixing angles. This model can be regarded as an effective description of the fermionic sector of a large class of existing flavor models and thus might serve as a useful reference frame for a further understanding of flavor hierarchies in the SM. Already such a minimal framework gives rise to FCNC effects through exchange of massive SM bosons whose couplings to the light fermions get modified by the mixing. We derive general formulae for these corrections and discuss the bounds on the heavy fermion masses. Particularly stringent bounds, in a few TeV range, come from the corrections to the Z couplings.Comment: 19 pages, 1 figur
    corecore