1,239 research outputs found
Innate recognition of apoptotic cells:novel apoptotic cell-associated molecular patterns revealed by crossreactivity of anti-LPS antibodies
Cells dying by apoptosis are normally cleared by phagocytes through mechanisms that can suppress inflammation and immunity. Molecules of the innate immune system, the pattern recognition receptors (PRRs), are able to interact not only with conserved structures on microbes (pathogen-associated molecular patterns, PAMPs) but also with ligands displayed by apoptotic cells. We reasoned that PRRs might therefore interact with structures on apoptotic cells-apoptotic cell-associated molecular patterns (ACAMPs)-that are analogous to PAMPs. Here we show that certain monoclonal antibodies raised against the prototypic PAMP, lipopolysaccharide (LPS), can crossreact with apoptotic cells. We demonstrate that one such antibody interacts with a constitutively expressed intracellular protein, laminin-binding protein, which translocates to the cell surface during apoptosis and can interact with cells expressing the prototypic PRR, mCD14 as well as with CD14-negative cells. Anti-LPS cross reactive epitopes on apoptotic cells colocalised with annexin V-and C1q-binding sites on vesicular regions of apoptotic cell surfaces and were released associated with apoptotic cell-derived microvesicles (MVs). These results confirm that apoptotic cells and microbes can interact with the immune system through common elements and suggest that anti-PAMP antibodies could be used strategically to characterise novel ACAMPs associated not only with apoptotic cells but also with derived MVs
The N-terminus of CD14 acts to bind apoptotic cells and confers rapid-tethering capabilities on non-myeloid cells:CD14 and rapid tethering of apoptotic cells
Cell death and removal of cell corpses in a timely manner is a key event in both physiological and pathological situations including tissue homeostasis and the resolution of inflammation. Phagocytic clearance of cells dying by apoptosis is a complex sequential process comprising attraction, recognition, tethering, signalling and ultimately phagocytosis and degradation of cell corpses. A wide range of molecules acting as apoptotic cell-associated ligands, phagocyte-associated receptors or soluble bridging molecules have been implicated within this process. The role of myeloid cell CD14 in mediating apoptotic cell interactions with macrophages has long been known though key molecules and residues involved have not been defined. Here we sought to further dissect the function of CD14 in apoptotic cell clearance. A novel panel of THP-1 cell-derived phagocytes was employed to demonstrate that CD14 mediates effective apoptotic cell interactions with macrophages in the absence of detectable TLR4 whilst binding and responsiveness to LPS requires TLR4. Using a targeted series of CD14 point mutants expressed in non-myeloid cells we reveal CD14 residue 11 as key in the binding of apoptotic cells whilst other residues are reported as key for LPS binding. Importantly we note that expression of CD14 in non-myeloid cells confers the ability to bind rapidly to apoptotic cells. Analysis of a panel of epithelial cells reveals that a number naturally express CD14 and that this is competent to mediate apoptotic cell clearance. Taken together these data suggest that CD14 relies on residue 11 for apoptotic cell tethering and it may be an important tethering molecule on so called 'non-professional' phagocytes thus contributing to apoptotic cell clearance in a non-myeloid setting. Furthermore these data establish CD14 as a rapid-acting tethering molecule, expressed in monocytes, which may thus confer responsiveness of circulating monocytes to apoptotic cell derived material. © 2013 Thomas et al
Apoptotic cell-derived ICAM-3 promotes both macrophage chemoattraction to and tethering of apoptotic cells
A wide range of molecules acting as apoptotic cell-associated ligands, phagocyte-associated receptors or soluble bridging molecules have been implicated within the complex sequential processes that result in phagocytosis and degradation of apoptotic cells. Intercellular adhesion molecule 3 (ICAM-3, also known as CD50), a human leukocyte-restricted immunoglobulin super-family (IgSF) member, has previously been implicated in apoptotic cell clearance, although its precise role in the clearance process is ill defined. The main objective of this work is to further characterise the function of ICAM-3 in the removal of apoptotic cells. Using a range of novel anti-ICAM-3 monoclonal antibodies (mAbs), including one (MA4) that blocks apoptotic cell clearance by macrophages, alongside apoptotic human leukocytes that are normal or deficient for ICAM-3, we demonstrate that ICAM-3 promotes a domain 1–2-dependent tethering interaction with phagocytes. Furthermore, we demonstrate an apoptosis-associated reduction in ICAM-3 that results from release of ICAM-3 within microparticles that potently attract macrophages to apoptotic cells. Taken together, these data suggest that apoptotic cell-derived microparticles bearing ICAM-3 promote macrophage chemoattraction to sites of leukocyte cell death and that ICAM-3 mediates subsequent cell corpse tethering to macrophages. The defined function of ICAM-3 in these processes and profound defect in chemotaxis noted to ICAM-3-deficient microparticles suggest that ICAM-3 may be an important adhesion molecule involved in chemotaxis to apoptotic human leukocytes
Analysis of the interaction of monoclonal antibodies with surface IgM on neoplastic B-cells
In vitro studies identified three Burkitts lymphoma cell lines, Ramos, MUTU-I and Daudi, that were growth inhibited by anti-IgM antibody. However, only Ramos and MUTU-I were sensitive to monoclonal antibodies (mAb) recognizing the Fc region of surface IgM (anti-Fcμ). Experiments using anti-Fcμ mAb (single or non-crossblocking pairs), polyclonal anti-μ Ab, and hyper-crosslinking with a secondary layer of Ab, showed that growth inhibition of B-cell lines was highly dependent on the extent of IgM crosslinking. This was confirmed by using Fab′, F(ab′)2and F(ab′)3derivatives from anti-Fcμ mAb, where increasing valency caused corresponding increases in growth arrest and apoptosis, presumably as a result of more efficient BCR-crosslinking on the cell surface. The ability of a single mAb to induce growth arrest was highly dependent on epitope specificity, with mAb specific for the Fc region (Cμ2–Cμ4 domains) being much more effective than those recognizing the Fab region (anti-L chain, anti-Id and anti-Fdμ, or Cμ1). Only when hyper-crosslinked with polyclonal anti-mouse IgG did the latter result in appreciable growth inhibition. Binding studies showed that these differences in function were not related to differences in the affinity, but probably related to intrinsic crosslinking capacity of mAb. © 1999 Cancer Research Campaig
High energy emission from microquasars
The microquasar phenomenon is associated with the production of jets by X-ray
binaries and, as such, may be associated with the majority of such systems. In
this chapter we briefly outline the associations, definite, probable, possible,
and speculative, between such jets and X-ray, gamma-ray and particle emission.Comment: Contributing chapter to the book Cosmic Gamma-Ray Sources, K.S. Cheng
and G.E. Romero (eds.), to be published by Kluwer Academic Publishers,
Dordrecht, 2004. (19 pages
Prevalence and demographics of methicillin resistant Staphylococcus aureus in culturable skin and soft tissue infections in an urban emergency department
<p>Abstract</p> <p>Background</p> <p>The rising incidence of methicillin resistant <it>Staph. aureus </it>(MRSA) infections is a concern for emergency practitioners. While studies have examined MRSA in inpatients, few have focused on emergency department populations. We sought to describe predictors of MRSA skin infections in an emergency department population.</p> <p>Methods</p> <p>This was a prospective observational cohort study conducted over three months in 2005. A convenience sample of patients with culturable skin infections presenting to a busy, urban emergency department was enrolled. Demographic and risk factor information was collected by structured interview. The predictive value of each risk factor for MRSA, as identified by culture, was tested using univariable logistic regression, and a multivariable predictive model was developed.</p> <p>Results</p> <p>Patients were 43% black, 40% female and mean age was 39 years (SD 14 years). Of the 182 patients with cultures, prevalence of MRSA was 58% (95%CI 50% to 65%). Significant predictors of MRSA were youth, lower body mass index, sexual contact in the past month, presence of an abscess cavity, spontaneous infection, and incarceration. The multivariable model had a C-statistic of 0.73 (95%CI 0.67 to 0.79) with four significant variables: age, group living, abscess cavity, and sexual contact within one month.</p> <p>Conclusion</p> <p>In this population of emergency department patients, MRSA skin infection was related to youth, recent sexual contact, presence of abscess, low body mass index, spontaneity of infection, incarceration or contact with an inmate, and group home living.</p
Disentangling the Relative Importance of Changes in Climate and Land-Use Intensity in Driving Recent Bird Population Trends
Threats to biodiversity resulting from habitat destruction and deterioration have been documented for many species, whilst climate change is regarded as increasingly impacting upon species' distribution and abundance. However, few studies have disentangled the relative importance of these two drivers in causing recent population declines. We quantify the relative importance of both processes by modelling annual variation in population growth of 18 farmland bird species in the UK as a function of measures of land-use intensity and weather. Modelled together, both had similar explanatory power in accounting for annual fluctuations in population growth. When these models were used to retrodict population trends for each species as a function of annual variation in land-use intensity and weather combined, and separately, retrodictions incorporating land-use intensity were more closely linked to observed population trends than retrodictions based only on weather, and closely matched the UK farmland bird index from 1970 onwards. Despite more stable land-use intensity in recent years, climate change (inferred from weather trends) has not overtaken land-use intensity as the dominant driver of bird populations
Biogenesis of a bacterial metabolosome for propanediol utilization
Bacterial metabolosomes are a family of protein organelles in bacteria. Elucidating how thousands of proteins self-assemble to form functional metabolosomes is essential for understanding their significance in cellular metabolism and pathogenesis. Here we investigate the de novo biogenesis of propanediol-utilization (Pdu) metabolosomes and characterize the roles of the key constituents in generation and intracellular positioning of functional metabolosomes. Our results demonstrate that the Pdu metabolosome undertakes both “Shell first” and “Cargo first” assembly pathways, unlike the β-carboxysome structural analog which only involves the “Cargo first” strategy. Shell and cargo assemblies occur independently at the cell poles. The internal cargo core is formed through the ordered assembly of multiple enzyme complexes, and exhibits liquid-like properties within the metabolosome architecture. Our findings provide mechanistic insight into the molecular principles driving bacterial metabolosome assembly and expand our understanding of liquid-like organelle biogenesis
Contrasting prefrontal cortex contributions to episodic memory dysfunction in behavioural variant frontotemporal dementia and alzheimer's disease
Recent evidence has questioned the integrity of episodic memory in behavioural variant frontotemporal dementia (bvFTD), where recall performance is impaired to the same extent as in Alzheimer's disease (AD). While these deficits appear to be mediated by divergent patterns of brain atrophy, there is evidence to suggest that certain prefrontal regions are implicated across both patient groups. In this study we sought to further elucidate the dorsolateral (DLPFC) and ventromedial (VMPFC) prefrontal contributions to episodic memory impairment in bvFTD and AD. Performance on episodic memory tasks and neuropsychological measures typically tapping into either DLPFC or VMPFC functions was assessed in 22 bvFTD, 32 AD patients and 35 age- and education-matched controls. Behaviourally, patient groups did not differ on measures of episodic memory recall or DLPFC-mediated executive functions. BvFTD patients were significantly more impaired on measures of VMPFC-mediated executive functions. Composite measures of the recall, DLPFC and VMPFC task scores were covaried against the T1 MRI scans of all participants to identify regions of atrophy correlating with performance on these tasks. Imaging analysis showed that impaired recall performance is associated with divergent patterns of PFC atrophy in bvFTD and AD. Whereas in bvFTD, PFC atrophy covariates for recall encompassed both DLPFC and VMPFC regions, only the DLPFC was implicated in AD. Our results suggest that episodic memory deficits in bvFTD and AD are underpinned by divergent prefrontal mechanisms. Moreover, we argue that these differences are not adequately captured by existing neuropsychological measures
RNA polymerase II stalling promotes nucleosome occlusion and pTEFb recruitment to drive immortalization by Epstein-Barr virus
Epstein-Barr virus (EBV) immortalizes resting B-cells and is a key etiologic agent in the development of numerous cancers. The essential EBV-encoded protein EBNA 2 activates the viral C promoter (Cp) producing a message of ~120 kb that is differentially spliced to encode all EBNAs required for immortalization. We have previously shown that EBNA 2-activated transcription is dependent on the activity of the RNA polymerase II (pol II) C-terminal domain (CTD) kinase pTEFb (CDK9/cyclin T1). We now demonstrate that Cp, in contrast to two shorter EBNA 2-activated viral genes (LMP 1 and 2A), displays high levels of promoter-proximally stalled pol II despite being constitutively active. Consistent with pol II stalling, we detect considerable pausing complex (NELF/DSIF) association with Cp. Significantly, we observe substantial Cp-specific pTEFb recruitment that stimulates high-level pol II CTD serine 2 phosphorylation at distal regions (up to +75 kb), promoting elongation. We reveal that Cp-specific pol II accumulation is directed by DNA sequences unfavourable for nucleosome assembly that increase TBP access and pol II recruitment. Stalled pol II then maintains Cp nucleosome depletion. Our data indicate that pTEFb is recruited to Cp by the bromodomain protein Brd4, with polymerase stalling facilitating stable association of pTEFb. The Brd4 inhibitor JQ1 and the pTEFb inhibitors DRB and Flavopiridol significantly reduce Cp, but not LMP1 transcript production indicating that Brd4 and pTEFb are required for Cp transcription. Taken together our data indicate that pol II stalling at Cp promotes transcription of essential immortalizing genes during EBV infection by (i) preventing promoter-proximal nucleosome assembly and ii) necessitating the recruitment of pTEFb thereby maintaining serine 2 CTD phosphorylation at distal regions
- …