420 research outputs found

    Discovering the right place to check-in using web-based proximate selection

    Get PDF
    With information technology becoming increasingly embedded in our everyday physical world, there is a growing set of mobile applications that involve a connection with the digital representation of physical places. This association is normally initiated with a check-in procedure, through which a person asserts her presence at a particular place and determines the context for subsequent interactions. The common assumption is that a mobile application will be able to search the surrounding environment and present the user with the intended check-in target; however, in a world of ubiquitous place-based services, this assumption may no longer hold. A person in an urban environment would, at any moment, be surrounded by a large number of places, all of which could be regarded as possible interaction contexts for that person. In this work, we investigate the real-word challenges associated with wide-scale place selection and how the process can be affected by the place environment, by the position of the person in relation to the target place and by positioning errors. To study this reality, we used Google Places as a directory of georeferenced places. We conducted 14,400 nearby place queries structured around different combinations of our three independent variables. The results suggest that the overall performance is poor, except for low-density scenarios, and that this discovery process, albeit relevant, should always be combined with other place discovery approaches. The results also help to understand how this performance is affected by check-in positions and by the properties of the place environment.- (undefined

    Elicitation of Neutralizing Antibodies Directed against CD4-Induced Epitope(s) Using a CD4 Mimetic Cross-Linked to a HIV-1 Envelope Glycoprotein

    Get PDF
    The identification of HIV-1 envelope glycoprotein (Env) structures that can generate broadly neutralizing antibodies (BNAbs) is pivotal to the development of a successful vaccine against HIV-1 aimed at eliciting effective humoral immune responses. To that end, the production of novel Env structure(s) that might induce BNAbs by presentation of conserved epitopes, which are otherwise occluded, is critical. Here, we focus on a structure that stabilizes Env in a conformation representative of its primary (CD4) receptor-bound state, thereby exposing highly conserved “CD4 induced” (CD4i) epitope(s) known to be important for co-receptor binding and subsequent virus infection. A CD4-mimetic miniprotein, miniCD4 (M64U1-SH), was produced and covalently complexed to recombinant, trimeric gp140 envelope glycoprotein (gp140) using site-specific disulfide linkages. The resulting gp140-miniCD4 (gp140-S-S-M64U1) complex was recognized by CD4i antibodies and the HIV-1 co-receptor, CCR5. The gp140-miniCD4 complex elicited the highest titers of CD4i binding antibodies as well as enhanced neutralizing antibodies against Tier 1 viruses as compared to gp140 protein alone following immunization of rabbits. Neutralization against HIV-27312/V434M and additional serum mapping confirm the specific elicitation of antibodies directed to the CD4i epitope(s). These results demonstrate the utility of structure-based approach in improving immunogenic response against specific region, such as the CD4i epitope(s) here, and its potential role in vaccine application

    Structure-Based Stabilization of HIV-1 gp120 Enhances Humoral Immune Responses to the Induced Co-Receptor Binding Site

    Get PDF
    The human immunodeficiency virus type 1 (HIV-1) exterior envelope glycoprotein, gp120, possesses conserved binding sites for interaction with the primary virus receptor, CD4, and also for the co-receptor, generally CCR5. Although gp120 is a major target for virus-specific neutralizing antibodies, the gp120 variable elements and its malleable nature contribute to evasion of effective host-neutralizing antibodies. To understand the conformational character and immunogenicity of the gp120 receptor binding sites as potential vaccine targets, we introduced structure-based modifications to stabilize gp120 core proteins (deleted of the gp120 major variable regions) into the conformation recognized by both receptors. Thermodynamic analysis of the re-engineered core with selected ligands revealed significant stabilization of the receptor-binding regions. Stabilization of the co-receptor-binding region was associated with a marked increase in on-rate of ligand binding to this site as determined by surface plasmon resonance. Rabbit immunization studies showed that the conformational stabilization of core proteins, along with increased ligand affinity, was associated with strikingly enhanced humoral immune responses against the co-receptor-binding site. These results demonstrate that structure-based approaches can be exploited to stabilize a conformational site in a large functional protein to enhance immunogenic responses specific for that region

    The evolution of galaxies from primeval irregulars to present-day ellipticals

    Full text link
    The current understanding of galaxy formation is that it proceeds in a 'bottom up' way, with the formation of small clumps of gas and stars that merge hierarchically until giant galaxies are built up. The baryonic gas loses the thermal energy by radiative cooling and falls towards the centres of the new galaxies, while supernovae (SNe) blow gas out. Any realistic model therefore requires a proper treatment of these processes, but hitherto this has been far from satisfactory. Here we report an ultra-high-resolution simulation that follows evolution from the earliest stages of galaxy formation through the period of dynamical relaxation. The bubble structures of gas revealed in our simulation (<3×108< 3\times10^8 years) resemble closely the high-redshift Lyman α\alpha emitters (LAEs). After 10910^9 years these bodies are dominated by stellar continuum radiation and look like the Lyman break galaxies (LBGs) known as the high-redshift star-forming galaxies at which point the abundance of elements heavier than helium ("metallicity") appears to be solar. After 1.3×10101.3\times10^{10} years, these galaxies resemble present-day ellipticals.Comment: 27 pages and 4 figures, Supplementary Information included, movie available on http://www.isc.senshu-u.ac.jp/~thj0613/natur

    Computational identification of ubiquitylation sites from protein sequences

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Ubiquitylation plays an important role in regulating protein functions. Recently, experimental methods were developed toward effective identification of ubiquitylation sites. To efficiently explore more undiscovered ubiquitylation sites, this study aims to develop an accurate sequence-based prediction method to identify promising ubiquitylation sites.</p> <p>Results</p> <p>We established an ubiquitylation dataset consisting of 157 ubiquitylation sites and 3676 putative non-ubiquitylation sites extracted from 105 proteins in the UbiProt database. This study first evaluates promising sequence-based features and classifiers for the prediction of ubiquitylation sites by assessing three kinds of features (amino acid identity, evolutionary information, and physicochemical property) and three classifiers (support vector machine, <it>k</it>-nearest neighbor, and NaĂŻveBayes). Results show that the set of used 531 physicochemical properties and support vector machine (SVM) are the best kind of features and classifier respectively that their combination has a prediction accuracy of 72.19% using leave-one-out cross-validation.</p> <p>Consequently, an informative physicochemical property mining algorithm (IPMA) is proposed to select an informative subset of 531 physicochemical properties. A prediction system UbiPred was implemented by using an SVM with the feature set of 31 informative physicochemical properties selected by IPMA, which can improve the accuracy from 72.19% to 84.44%. To further analyze the informative physicochemical properties, a decision tree method C5.0 was used to acquire if-then rule-based knowledge of predicting ubiquitylation sites. UbiPred can screen promising ubiquitylation sites from putative non-ubiquitylation sites using prediction scores. By applying UbiPred, 23 promising ubiquitylation sites were identified from an independent dataset of 3424 putative non-ubiquitylation sites, which were also validated by using the obtained prediction rules.</p> <p>Conclusion</p> <p>We have proposed an algorithm IPMA for mining informative physicochemical properties from protein sequences to build an SVM-based prediction system UbiPred. UbiPred can predict ubiquitylation sites accompanied with a prediction score each to help biologists in identifying promising sites for experimental verification. UbiPred has been implemented as a web server and is available at <url>http://iclab.life.nctu.edu.tw/ubipred</url>.</p

    B Cell Recognition of the Conserved HIV-1 Co-Receptor Binding Site Is Altered by Endogenous Primate CD4

    Get PDF
    The surface HIV-1 exterior envelope glycoprotein, gp120, binds to CD4 on the target cell surface to induce the co-receptor binding site on gp120 as the initial step in the entry process. The binding site is comprised of a highly conserved region on the gp120 core, as well as elements of the third variable region (V3). Antibodies against the co-receptor binding site are abundantly elicited during natural infection of humans, but the mechanism of elicitation has remained undefined. In this study, we investigate the requirements for elicitation of co-receptor binding site antibodies by inoculating rabbits, monkeys and human-CD4 transgenic (huCD4) rabbits with envelope glycoprotein (Env) trimers possessing high affinity for primate CD4. A cross-species comparison of the antibody responses showed that similar HIV-1 neutralization breadth was elicited by Env trimers in monkeys relative to wild-type (WT) rabbits. In contrast, antibodies against the co-receptor site on gp120 were elicited only in monkeys and huCD4 rabbits, but not in the WT rabbits. This was supported by the detection of high-titer co-receptor antibodies in all sera from a set derived from human volunteers inoculated with recombinant gp120. These findings strongly suggest that complexes between Env and (high-affinity) primate CD4 formed in vivo are responsible for the elicitation of the co-receptor-site-directed antibodies. They also imply that the naĂŻve B cell receptor repertoire does not recognize the gp120 co-receptor site in the absence of CD4 and illustrate that conformational stabilization, imparted by primary receptor interaction, can alter the immunogenicity of a type 1 viral membrane protein

    Crosslinking of a CD4 Mimetic Miniprotein with HIV-1 Env gp140 Alters Kinetics and Specificities of Antibody Responses against HIV-1 Env in Macaques

    Get PDF
    Evaluation of the epitope specificities, location (systemic, mucosal) and effector function of antibodies elicited by novel HIV-1 immunogens engineered to improve exposure of specific epitopes is critical for HIV-1 vaccine development. Utilizing an array of humoral assays, we evaluated the magnitude, epitope specificity, avidity and function of systemic and mucosal immune responses elicited by a vaccine regimen containing Env cross-linked to a CD4 mimetic miniprotein (gp140-M64U1) in rhesus macaques. Crosslinking of gp140 Env with M64U1 resulted in an earlier increase in both the magnitude and avidity of the IgG binding response compared to Env protein alone. Notably, binding IgG responses at an early time point correlated with Antibody Dependent Cellular Cytotoxicity (ADCC) function at the peak immunity time point, which was higher for the crosslinked Env group compared to the Env group alone. In addition, the crosslinked Env group developed higher IgG responses against a linear epitope in the C1 gp120 region of the HIV-1 envelope glycoprotein. These data demonstrate that structural modification of the HIV-1 envelope immunogen by crosslinking gp140 with the CD4 mimetic M64U1 elicited an earlier increase of binding antibody responses and altered the specificity of the IgG responses that correlated with the rise of subsequent antibody-mediated antiviral functions.IMPORTANCE The development of an efficacious HIV-1 vaccine remains a global priority to prevent new cases of HIV-1 infection. Of the six HIV-1 efficacy trials to date, only one has demonstrated partial efficacy, and the immune correlates analysis of this trial revealed a role for binding antibodies and antibody Fc mediated effector functions. New HIV-1 envelope immunogens are being engineered to selectively expose the most vulnerable and conserved sites on the HIV-1 envelope with the goal of eliciting antiviral antibodies. Evaluation of the humoral responses elicited by these novel immunogen designs in nonhuman primates is critical for understanding how to improve upon immunogen design to inform further testing in human clinical trials. Our results demonstrate that Env structural modifications that aim to mimic the CD4 bound conformation can result in earlier antibody elicitation, altered epitope specificity and increased antiviral function post immunization.This work was supported by the National Institutes of Health (NIH), National Institute of Allergy and Infectious Diseases (NIAID) grants, Center for HIV/AIDS Vaccine Immunology (CHAVI)/ HIV Vaccine Trials Network (HVTN) Early Stage Investigator (ESI) Award (U19AI067854, UM1AI068618), (HHSN27201100016C), 1P01AI120756 and the NIH NIAID Duke Center for AIDS Research Immunology Core P30 AI 64518. The NHP study was funded by NIH PO1 AI066287-02

    Insights from computational modeling in inflammation and acute rejection in limb transplantation

    Get PDF
    Acute skin rejection in vascularized composite allotransplantation (VCA) is the major obstacle for wider adoption in clinical practice. This study utilized computational modeling to identify biomarkers for diagnosis and targets for treatment of skin rejection. Protein levels of 14 inflammatory mediators in skin and muscle biopsies from syngeneic grafts [n = 10], allogeneic transplants without immunosuppression [n = 10] and allografts treated with tacrolimus [n = 10] were assessed by multiplexed analysis technology. Hierarchical Clustering Analysis, Principal Component Analysis, Random Forest Classification and Multinomial Logistic Regression models were used to segregate experimental groups. Based on Random Forest Classification, Multinomial Logistic Regression and Hierarchical Clustering Analysis models, IL-4, TNF-α and IL-12p70 were the best predictors of skin rejection and identified rejection well in advance of histopathological alterations. TNF-α and IL-12p70 were the best predictors of muscle rejection and also preceded histopathological alterations. Principal Component Analysis identified IL-1α, IL-18, IL-1β, and IL-4 as principal drivers of transplant rejection. Thus, inflammatory patterns associated with rejection are specific for the individual tissue and may be superior for early detection and targeted treatment of rejection. © 2014 Wolfram et al

    Fetal Programming of Adult Glucose Homeostasis in Mice

    Get PDF
    BACKGROUND: Emerging evidence suggests that dietary soy and phytoestrogens can have beneficial effects on lipid and glucose metabolism. We have previously shown that male mice fed from conception to adulthood with a high soy-containing diet had reduced body weight, adiposity and a decrease in glucose intolerance, an early marker of insulin resistance and diabetes. OBJECTIVES: The purpose of this study was to identify the precise periods of exposure during which phytoestrogens and dietary soy improve lipid and glucose metabolism. Since intrauterine position (IUP) has been shown to alter sensitivity to endocrine disruptors, we also investigated whether the combination of IUP and fetal exposure to dietary phytoestrogens could potentially affect adult metabolic parameters. METHODS: Male outbred mice (CD-1) were allowed ad libitum access to either a high soy-containing diet or a soy-free diet either during gestation, lactation or after weaning. Adiposity and bone mass density was assessed by dual x-ray absorptiometry. Glucose tolerance was assessed by a glucose tolerance test. Blood pressure was examined by the tail-cuff system. RESULTS: Here we show that metabolic improvements are dependent on precise windows of exposure during life. The beneficial effects of dietary soy and phytoestrogens on adiposity were apparent only in animals fed post-natally, while the improvements in glucose tolerance are restricted to animals with fetal exposure to soy. Interestingly, we observed that IUP influenced adult glucose tolerance, but not adiposity. Similar IUP trends were observed for other estrogen-related metabolic parameters such as blood pressure and bone mass density. CONCLUSION: Our results suggest that IUP and fetal exposure to estrogenic environmental disrupting compounds, such as dietary phytoestrogens, could alter metabolic and cardiovascular parameters in adult individuals independently of adipose gain

    A rare exception to Haldane's rule: are X chromosomes key to hybrid incompatibilities?

    Get PDF
    This work was funded by NERC (NE/G014906/1, NE/L011255/1, NE/I027800/1). Additional funding from the Orthopterists’ Society to PM is also gratefully acknowledged.The prevalence of Haldane’s rule suggests that sex chromosomes commonly have a key role in reproductive barriers and speciation. However, the majority of research on Haldane’s rule has been conducted in species with conventional sex determination systems (XY and ZW) and exceptions to the rule have been understudied. Here we test the role of X-linked incompatibilities in a rare exception to Haldane’s rule for female sterility in field cricket sister species (Teleogryllus oceanicus and T. commodus). Both have an XO sex determination system. Using three generations of crosses, we introgressed X chromosomes from each species onto different, mixed genomic backgrounds to test predictions about the fertility and viability of each cross type. We predicted that females with two different species X chromosomes would suffer reduced fertility and viability compared with females with two parental X chromosomes. However, we found no strong support for such X-linked incompatibilities. Our results preclude X–X incompatibilities and instead support an interchromosomal epistatic basis to hybrid female sterility. We discuss the broader implications of these findings, principally whether deviations from Haldane’s rule might be more prevalent in species without dimorphic sex chromosomes.PostprintPeer reviewe
    • …
    corecore