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Abstract  26 

Evaluation of the epitope specificities, location (systemic, mucosal) and effector function of 27 

antibodies elicited by novel HIV-1 immunogens engineered to improve exposure of specific 28 

epitopes is critical for HIV-1 vaccine development. Utilizing an array of humoral assays, we 29 

evaluated the magnitude, epitope specificity, avidity and function of systemic and mucosal 30 

immune responses elicited by a vaccine regimen containing Env cross-linked to a CD4 mimetic 31 

miniprotein (gp140-M64U1) in rhesus macaques. Crosslinking of gp140 Env with M64U1 32 

resulted in an earlier increase in both the magnitude and avidity of the IgG binding response 33 

compared to Env protein alone. Notably, binding IgG responses at an early time point correlated 34 

with Antibody Dependent Cellular Cytotoxicity (ADCC) function at the peak immunity time point, 35 

which was higher for the crosslinked Env group compared to the Env group alone. In addition, 36 

the crosslinked Env group developed higher IgG responses against a linear epitope in the C1 37 

gp120 region of the HIV-1 envelope glycoprotein. These data demonstrate that structural 38 

modification of the HIV-1 envelope immunogen by crosslinking gp140 with the CD4 mimetic 39 

M64U1 elicited an earlier increase of binding antibody responses and altered the specificity of 40 

the IgG responses that correlated with the rise of subsequent antibody-mediated antiviral 41 

functions.    42 

 43 

Importance 44 

The development of an efficacious HIV-1 vaccine remains a global priority to prevent new cases 45 

of HIV-1 infection. Of the six HIV-1 efficacy trials to date, only one has demonstrated partial 46 

efficacy, and the immune correlates analysis of this trial revealed a role for binding antibodies 47 

and antibody Fc mediated effector functions. New HIV-1 envelope immunogens are being 48 

engineered to selectively expose the most vulnerable and conserved sites on the HIV-1 49 

envelope with the goal of eliciting antiviral antibodies. Evaluation of the humoral responses 50 

elicited by these novel immunogen designs in nonhuman primates is critical for understanding 51 



how to improve upon immunogen design to inform further testing in human clinical trials. Our 52 

results demonstrate that Env structural modifications that aim to mimic the CD4 bound 53 

conformation can result in earlier antibody elicitation, altered epitope specificity and increased 54 

antiviral function post immunization.  55 

 56 

Introduction 57 

A critical component in the path toward the development of a successful HIV-1 vaccine 58 

strategy is definition of the epitope specificities, location (systemic, mucosal) and effector 59 

function of antibodies elicited by novel HIV-1 immunogens engineered to improve exposure of 60 

specific epitopes. There is a growing body of evidence from animal models that antibodies can 61 

control virus replication (1-4) through elimination of infected cells (4), engagement of Fc-62 

mediated antibody effector functions to limit founder viruses (2), and delay acquisition and/or 63 

prevent the establishment of infection (5-15) through mechanisms including virus neutralization 64 

(8-14, 16) and antibody Fc-mediated anti-viral functions (11, 15, 17). Together, these studies 65 

include both passive immunization strategies and vaccine approaches that have tested a range 66 

of antibody specificities, antibody isotypes and effector functions (broadly neutralizing, non-67 

broadly neutralizing and antibody Fc-mediated antiviral activities), thus demonstrating that there 68 

is much diversity in the types of antibodies that may protect. However, there remains a gap in 69 

understanding how different immunogen designs specifically impact antibody specificities, 70 

kinetics and antiviral functions (i.e. neutralizing and non-broadly neutralizing). 71 

 72 

 There are numerous challenges for inducing broadly neutralizing antibody functions by 73 

vaccination, including but not limited to shielding of key epitopes by glycans, difficulty in 74 

presentation of the correct Env structures, and the unusual traits of broadly neutralizing 75 

antibodies (18, 19). In contrast, the one partially efficacious HIV-1 vaccine in humans 76 

demonstrated a potential role for non-broadly neutralizing antibodies in preventing HIV-1 77 



acquisition (20). Non-broadly neutralizing antibodies include CD4-induced (CD4i) antibodies that 78 

target epitopes whose exposure is triggered by binding of HIV-1 Env gp120 to CD4 on the host 79 

cell. A recent study demonstrated that CD4i antibodies correlated with viremia control following 80 

mucosal challenge in rhesus macaques (3).    81 

  82 

 HIV vaccine strategies can involve modifying the structure of Env for improved exposure 83 

of CD4i epitopes. CD4i epitopes include co-receptor binding sites (21, 22) that are highly 84 

conserved (23-25) as well as variable loop domains (26, 27), some of which are easily elicited 85 

during natural HIV-1 infection (24, 28, 29). One immunogen design approach has utilized co-86 

expression of CD4 in a single molecular structure with HIV-1 Env to promote binding and 87 

complex formation of CD4 and Env (3, 30-34). Another approach involves small molecule CD4 88 

mimetic compounds, which have been shown to inhibit HIV-1 virus entry by competitively 89 

binding to CD4 binding site (CD4bs) (35, 36). A recent study further showed that CD4 mimetic 90 

compounds can activate or inactivate primary HIV Env trimers depending on properties of the 91 

CD4 mimetics and the Env trimer, and how many subunits of the trimer are bound (37). Several 92 

studies have explored biochemical cross-linking of synthetic CD4 mimetic molecules with Env 93 

proteins for improved CD4i epitope exposure (31, 38-41). In particular, a CD4-mimetic 94 

miniprotein M64U1, has been shown to expose both CD4i epitopes and co-receptor binding 95 

sites when covalently conjugated to Env gp140 (38), eliciting increased titers of CD4i antibody-96 

mediated neutralization in rabbit immunization studies (38, 42). The gp140-M64U1 cross-linked 97 

vaccine was further tested in macaques (Bogers et al, submitted) and was shown to alter the 98 

kinetics of B cell responses and levels of neutralization and ADCC responses. Here we further 99 

characterized the magnitude, specificity, and kinetics of binding antibody responses and 100 

examined the correlation between these parameters of binding antibody response with that of 101 

antibody functions, providing novel evidence that the cross-linked gp140-M64U1 complex can 102 



impact both the binding properties of and the antiviral functions mediated by Env-specific 103 

antibodies in primates.   104 

 105 

MATERIALS AND METHODS 106 

Animal study design.  107 

Rhesus macaques of Chinese origin were housed at the Biomedical Primate Research Center 108 

(BPRC), The Netherlands. The study protocol and experimental procedures were approved by 109 

the institute’s animal ethical care and use committee and were performed in accordance with 110 

Dutch law and International ethical and scientific standards and guidelines (Bogers et al, 111 

submitted).  The study consisted of four groups of 6 animals each (Table 1).  One group (gp140 112 

group) received intramuscular immunization with 100 mg gp140 protein with the variable loop 2 113 

(V2) deleted (SF162∆V2 gp140), administered in adjuvant MF59; the second group (gp140-114 

M64U1 group) received immunizations with 100 mg gp140 cross-linked with the CD4-mimetic 115 

M64U1 (gp140-M64U1, produced by incubating gp140 with M64U1-SH that contains an 116 

additional sulfhydryl group on the side chain of Lys4 at 1:3 gp140:M64U1-SH ratio) (38, 42), 117 

also in MF59. In addition, two control groups received either the M64U1/MF59 only (50 mg) or 118 

mock immunizations. All protein immunizations were delivered intramuscularly at week 0, 4, 24, 119 

36, and 107 of study.    120 

Binding antibody multiplex assay (BAMA).  121 

Env-specific IgG and IgA responses in serum and in mucosal samples were measured as 122 

previously described (29, 43, 44). For quantification of IgA responses, IgG was depleted from 123 

sera using Protein G HP MultiTrap Filter Plates (GE Healthcare Life Sciences).  Mucosal 124 

specimens were filtered, buffer-exchanged, and concentrated to equal volumes before 125 

measurement of total and specific antibody. The rectal wash samples were examined and none 126 

had visual blood contamination. Total IgG concentration in each mucosal sample was 127 

determined by macaque total IgG ELISA, and specific activity was calculated as: Specific 128 



activity= (MFI x dilution)/total antibody. For characterization of CD4 binding site (CD4bs) and 129 

CD4-inducible (CD4i) antibodies, a CD4bs and CD4i differential binding antigen panel was used 130 

for BAMA, which includes the wildtype (WT) YU2 gp120 core, resurfaced stabilized core 3 131 

(RSC3), HXB2 8b core, and their mutants containing mutations to amino acids that are known to 132 

be required for binding by CD4bs or CD4i antibodies (proteins kindly provided by Dr. Mascola, 133 

Vaccine Research Center). Relative levels of CD4bs and CD4i specificities were calculated as 134 

the MFI of WT: MFI of mutant ratios for samples that bound to both WT and mutant with 135 

MFI>100 and at least 3-fold over the MFI of matched baseline (wk0) samples.  136 

Linear epitope mapping peptide microarray. Linear epitope mapping was performed as 137 

previously described (45, 46) with modifications. Briefly, array slides were provided by JPT 138 

Peptide Technologies GmbH (Berlin, Germany) by printing a peptide library designed by Dr. B. 139 

Korber (Los Alamos National Laboratory) onto Epoxy glass slides (PolyAn GmbH, Germany). 140 

The library contains overlapping peptides (15-mers overlapping by 12) covering 7 full-length 141 

HIV-1 gp160 Env consensus sequences (Clades A, B, C, D, Group M, CRF1 and CRF2)(46). 142 

Sequences of peptides contained in the peptide library have been previously published (47).  143 

Three identical subarrays, each containing the full peptide library, are printed on each slide. All 144 

serum samples were diluted 1:250 and hybridized to the slides using a Tecan HS4000 145 

Hybridization Workstation, followed by incubation with DyLight 649-conjugated goat anti-rabbit 146 

IgG (Jackson ImmunoResearch, PA). Fluorescence intensity was measured using a GenePix 147 

4300 scanner (Molecular Devices) and analyzed with GenePix software.  Binding intensity of the 148 

post-immunization serum to each peptide was corrected with its own background value, which 149 

was defined as the median signal intensity of the prebleed serum for that peptide plus 3 times 150 

the standard error among the 3 subarrays on slide.  151 

Surface Plasmon Resonance (SPR) test for binding avidity. SPR tests were performed as 152 

previously described on BIAcore 4000 instruments (20, 48). Binding dissociation rate constant 153 

(kd) and binding magnitude (response unit, RU) were measured for IgG purified from NHP sera, 154 



at 200 µg/ml, against a panel of HIV-1 Env glycoproteins including ConS gp140, SF162∆V2 155 

gp140, MN gp120, and gp41 MN. Env proteins were immobilized as previously described, and 156 

avidity score was calculated as RU/kd (20).   157 

Neutralization assays. Virus neutralization assays were performed on TZM-bl cell line, using 158 

replication competent or pseudotyped viruses grown in human peripheral blood mononuclear 159 

cells (PBMC) as previously described (49). Serial dilutions of serum samples were tested for 160 

neutralization of a panel of Tier 1 (SHIV-SF162P4 and SHIV-1157iEL-p, both as replication 161 

competent viruses) and Tier 2 (SHIV-SF162P3.5 and SHIV-89.6P.18, as pseudotyped viruses, 162 

and SHIV-89.6 and SHIV-1157ipd3N4, as replication competent viruses) SHIV viruses in TZM-163 

bl cells.  164 

ADCC assays. ADCC assays were performed as previously described by Pollara et al. (50), 165 

using CEM.NKRCCR5 cells coated with recombinant HIV-1 SF162gp120 as target cells, and 166 

PBMC obtained from an HIV-seronegative donor as effector cells. The ADCC-mediating 167 

antibody titer was defined as the reciprocal of the highest dilution indicating a positive GzB 168 

response (>8% GzB activity) after background subtraction as previously described (50).  169 

 170 

Statistical analysis. Differences in the levels of antibody responses between the 2 vaccine 171 

groups or between vaccine and control groups were tested using the Wilcoxon rank sum exact 172 

test with false discovery rate (FDR) controlled using the Benjamini–Hochberg method (51), 173 

performed with SAS. Correlations between binding antibody responses (binding magnitude from 174 

BAMA and epitope mapping assays and dissociation rate from SPR assays) and antibody 175 

functions (ADCC and neutralization assay) were tested using the Spearman correlation test with 176 

FDR controlled using the Benjamini-Hochberg method.   177 

RESULTS 178 

Rhesus macaques were immunized with SF162∆V2 gp140 protein 5 times, either alone (gp140 179 

group, 6 animals) or cross-linked with a CD4 mimetic miniprotein (gp140-M64U1 group, 6 180 



animals) (Bogers et al, submitted). Env-specific antibody responses, including systemic and 181 

mucosal binding specificities and antibody avidity, were evaluated with samples collected at wk 182 

6 (2 weeks post 2nd immunization), wk 26 (2 weeks post 3rd immunization), wk38 (2 weeks post 183 

4th immunization), and wk107 (time of 5th immunization that is 71 weeks after 4th immunization).  184 

Early Env-binding IgG response with gp140-M64U1 vaccine.   185 

To characterize the development of Env-specific binding antibody responses over time, we 186 

tested longitudinal serum samples of the vaccinated animals for their binding to 187 

SF162gp140ΔV2 (the immunogen), ConS gp140 (Group M consensus (52-54), MN gp120, and 188 

MN gp41 proteins in binding antibody multiplex assays (BAMA). Among these 4 Env antigens 189 

tested, the highest response was seen in binding to SF162gp140ΔV2 (the vaccine strain), 190 

followed by ConS gp140. Similar kinetics were observed for the development of the Env-specific 191 

IgG responses against the 4 Env antigens examined. Serum IgG specific for the Env proteins 192 

were detectable as early as wk 6 (2 weeks after the 2nd immunization) for all 4 Env antigens 193 

tested in both the gp140 and gp140-M64U1 groups (Fig 1A-1D). The responses generally 194 

peaked at wk 26 (2 weeks after the 3rd immunization), with wk 38 (2 weeks after the 4th 195 

immunization) levels comparable to that of wk 26 for both groups. The responses measured at 196 

wk 107 (71 weeks after the 4th immunization) declined as expected, followed by a boost in the 197 

responses measured at wk 113 (6 weeks after the 5th immunization) (Fig 1A-1D).   198 

While the peak levels of binding antibody responses (wk 26 and wk 38) were generally 199 

comparable between the two groups, the gp140-M64U1 group showed significantly higher 200 

binding antibody responses at wk 6, revealing faster kinetics in the development of the anti-Env 201 

responses. For all 4 Env proteins tested, binding by the wk 6 sera was much higher for the 202 

gp140-M64U1 group compared to the gp140 group, with a FDR_p value (Wilcoxon rank sum 203 

exact test p value controlled for false discovery rate (FDR) with the Benjamini-Hochberg 204 

method) of 0.014  (Fig. 1A-1D, Table 2). Binding responses to all 4 Env proteins were again 205 



comparable between the gp140 and the gp140-M64U1 groups after the last immunization at wk 206 

113 (Fig. 1A, Table 2).   207 

Decreased Linear C1 Epitope IgG with gp140-M64U1 vaccine.   208 

Wk26 (2 weeks post 2nd immunization, the peak immunity time point) serum samples from all 209 

immunized animals were profiled for binding antibodies against gp160 linear epitopes using 210 

peptide microarray.  The HIV-1 Env peptide library contains overlapping peptides covering 7 full-211 

length consensus gp160 sequences (clade A, B, C, D, group M, CRF01 and CRF02). Serum 212 

IgG from both the gp140 and gp140-M64U1 groups bound epitopes in the C1, C2, V3, C4, V5 213 

and C5 regions of gp120 (Fig. 2A, 2B, and 2C) and the gp41 immunodominant (ID) region of 214 

gp41 (Fig. 2A, 2D and 2E). The magnitude of binding to these epitopes was generally 215 

comparable between the 2 immunized groups at wk 26 (Fig. 2A), with the exception of epitope 216 

C1.2-binding, which was significantly higher for the gp140 group compared to the gp140-M64U1 217 

group (FDR_p = 0.038; Fig. 2B and 2C, Table 2). Interestingly, this C1.2 linear epitope was 218 

identified in epitope mapping studies of the RV144 Thai trial, and plasma IgA binding to the 219 

corresponding C1 peptide covering the entire epitope region (C1_104. AE: 220 

MQEDVISLWDQSLKPCVKLTPLCV) correlated with increased risk of HIV-1 infection (i.e. 221 

decreased vaccine efficacy) in the secondary/exploratory immune correlate analysis of the trial 222 

(20). To further evaluate the kinetics and magnitude of this response, we measured the level of 223 

serum IgG response to linear C1_104.AE peptide over time by BAMA. Binding response against 224 

C1_104.AE was significantly higher for the gp140 group than the gp140-M64U1 group at wk26 225 

(FDR_p=0.014; Fig. 2F, Table 2), which is consistent with the trend observed in wk26 linear 226 

epitope mapping data (Fig. 2 A, B, and C). Similar to binding responses against Env proteins, 227 

binding responses to C1_104.AE peaked at wk 26 and wk 38, declined at wk107, and then 228 

increased again at wk113, after the fifth immunization. 229 

We modeled this C1_104 epitope in the monomeric subunit of gp120 from the SOSIP Env trimer 230 

structure(55), which is representative of the pre-fusion conformation, and found that it is 231 



exposed on the monomeric gp120 surface (Fig. 2G, red ribbon).  In the CD4-bound state, the 232 

formation of the bridging sheet results in the C-terminal half of the C1_104 epitope bending ~90 233 

degrees relative to the epitope in the SOSIP structure (Fig. 2G, pink ribbon). This bending 234 

results in a >30Å displacement in the position of the C-terminal residue of the C1_104 epitope, 235 

which in turn contacts CD4(56).  Given the large conformational change and associated burial of 236 

C-terminal residues upon contacting CD4, antibodies that recognize C1_104 in the unbound 237 

conformation therefore may not be able to recognize the epitope in the CD4 bound state.  While 238 

the effect of CD4 binding on the conformation of the C1_104 epitope in a V2 deleted gp140 may 239 

be different, these structural data do suggest that the CD4bs-cross-linked antigen may 240 

substantially impact exposure of the C1 epitope on the Env immunogen.   241 

Induction of CD4 binding site (CD4bs) antibodies by vaccination.  242 

Since the design of the gp140-M64U1 crosslinked immunogen involved potential modifications 243 

of gp120-CD4 interactions, we evaluated the level of CD4 binding site (CD4bs) and CD4-244 

inducible (CD4i) antibodies by measuring binding of the antibodies to gp120 structures with and 245 

without mutations that are known to interfere with recognition of CD4bs and CD4i epitopes (57).  246 

In particular, the D368R mutation abrogates binding of most CD4bs antibodies to gp120 core or 247 

gp120 (28, 57-60), Δ371 abrogates binding of VRC01-like antibodies to gp120 resurfaced 248 

stabilized core (RSC3) (57, 59), and the I420R mutation abrogates binding of gp120 core to 249 

17b-like CD4i antibodies (28, 59). With these reagents, we detected CD4bs binding antibodies 250 

(indicated by YU gp120 core WT:D368R ratios ≥ 2.5) in both vaccination groups (Fig. 3A) with 251 

comparable levels between the 2 groups (Table 2). Furthermore, VRC01-like binding antibodies 252 

(indicated by RSC3 WT:∆371 ≥ 2.5) developed in both vaccination groups at generally 253 

comparable levels (Fig. 3A, Table 2). 17b-like CD4i antibodies, defined as HXB2 8b core 254 

WT:I420R ≥2.5, were not induced (Fig. 3A).  255 

Early increase in antibody avidity with gp140-M64U1 vaccine.  256 



Maturation of the vaccine-elicited antibody response through determination of HIV-1 Env 257 

antibody avidity is an indicator of the quality of the vaccine-induced antibody responses. We 258 

measured the avidity (as dissociation rate constant (off-rate), kd, and avidity score, RU/kd) of 259 

purified serum IgG (from wk 6, wk 26, wk 38, wk 107, and wk 113) for binding to SF162 260 

gp140ΔV2 (Fig. 3B), MN gp120 (Fig. 3C), MN gp41 (Fig. 3D), and ConS gp140 (Fig. 3E). The 261 

avidity scores of serum IgG to these antigens peaked at wk26 and wk38 (Fig. 3F), and off-rates 262 

dropped to lowest levels (slowest off-rates) at the same time-points (Fig. 3B-3F). At wk 6, off-263 

rate for SF162 gp140ΔV2 was significantly slower in the gp140-M64U1 group compared to the 264 

gp140 group (median 1.7 x 10-4 versus 1.0 x 10-3 S-1 for gp140-M64U1 and gp140 groups 265 

respectively, FDR_p=0.022, Fig. 3B, Table 2). Off-rates were not statistically different, after 266 

FDR correction, for the two vaccine groups at wk 26, wk 38, and wk 113 (Fig. 3B-3F, Table 2). 267 

The longitudinal patterns of antibody off-rates and avidity score for gp41, gp120, and ConS 268 

gp140 were similar to that for SF162 gp140ΔV2, with the gp140-M64U1 group trending toward 269 

having a slower off-rate (Fig. 3C,3D, and 3E) and higher avidity score (Fig 3F) than the gp140 270 

group.   271 

Serum IgG Env binding avidity and magnitude correlate with ADCC and neutralization. 272 

We further explored correlations between binding antibody properties (binding MFI and off-273 

rates) and antiviral functions (neutralization and ADCC) of antibodies elicited in the study. 274 

Vaccinations elicited low to moderate levels of neutralizing antibodies against SF162P4, with 275 

titers ranging from <10 to 4403 at the peak neutralizing activity time point of wk 38 (post 3rd 276 

immunization) in most animals (Bogers et al, submitted). Neutralization of SHIV SF162P4 at wk 277 

38 was found to correlate significantly with wk 38 serum IgG binding to SF162 gp140∆V2 278 

(FDR_p=0.003, Spearman r=0.97; Fig. 4A and Table 3). Wk 38 neutralization of SHIV 279 

SF162P4 was also found to correlate with a faster off-rate for SF162 gp140∆V2 at wk 6 280 

(FDR_p=0.006, Spearman r=0.87; Fig. 4B) which indicated an inverse correlation with avidity; 281 



however wk 38 neutralization was not significantly correlated with contemporaneous (wk 38) off-282 

rate for SF162 gp140∆V2 (Table 3).   283 

Both vaccine groups developed strong ADCC activity measured with SF162 gp120-coated cells, 284 

which peaked at wk26 after the 2nd immunization with titers up to 19,024 (Bogers et al, 285 

submitted). ADCC titers were significantly higher for the gp140-M64U1 group compared to the 286 

gp140 group (FDR_p = 0.014) at wk 26, and trended higher at wk 113 (Table 2). Correlation 287 

analysis revealed that ADCC activity at wk 26 (post 3rd immunization) was not correlated with 288 

either contemporary (wk26) binding magnitude or avidity for SF162 gp140∆V2, but rather 289 

correlated with wk6 (post 2nd immunization) serum IgG binding (FDR_p=0.003, Spearman 290 

r=0.90; Fig. 4C) and avidity (FDR_p=0.035, Spearman r=-0.73 for off-rate; Fig. 4D and Table 3) 291 

for SF162 gp140∆V2, indicating that binding antibody responses early on may predict later 292 

antibody functions following further immunizations.     293 

Low level of serum IgA elicited.  294 

Env-specific IgA responses were evaluated in longitudinal serum samples. The overall 295 

magnitudes of HIV-1 Env serum IgA responses were much lower than serum IgG responses 296 

(Fig. 5A vs. Fig. 1A), with IgA binding positivity rates of 66.7% and 66.7% at wk 26 for SF162 297 

gp140ΔV2 for gp140 and gp140-M64U1 groups, respectively, compared to 100% and 100% for 298 

IgG binding to SF162 gp140ΔV2 at wk 26. Similar to serum IgG responses, serum IgA binding 299 

to SF162 gp140ΔV2 peaked earlier for the gp140-M64U1 group, at wk 6, compared to wk 26 for 300 

the gp140 group (Fig. 5A). However, no significant difference between the two groups in the 301 

magnitude of responses was detected for wk6 or for any time point (Fig. 5A, Table 2).  302 

Vaccine-elicited mucosal antibody responses.  303 

Nasal and rectal samples were collected from vaccinated animals at wk 38. Env-specific IgG 304 

responses were evaluated in these mucosal samples using BAMA (29, 43).Binding magnitude 305 

(MFI) was normalized to total recovered rhesus IgG concentration (µg/ml) in each mucosal 306 

sample to account for sampling variations. Total rhesus IgG ranged from <0.5-109 µg/ml 307 



(median 9.1 µg/ml) and <0.5-165 µg/ml (median 9.9 µg/ml) for nasal and rectal samples, 308 

respectively. We detected Env-specific IgG against SF162 gp140∆V2, MN gp120, and MN gp41 309 

in nasal washes from both the gp140 and gp140-M64U1 groups with comparable magnitudes 310 

(Fig. 5B, and data not shown). When compared to the mock immunized control animals, nasal 311 

samples from the gp140 group showed significantly higher levels of SF162 gp140ΔV2 specific 312 

antibodies (FDR_p=0.022, Table 2). The specific IgG binding of the rectal washes from the 313 

vaccinated animals to these Env proteins was not statistically different from that of control 314 

animals (data not shown).  We further examined the correlation between IgG responses in the 315 

serum and the mucosal compartments and found a lack of significant correlation between serum 316 

and nasal IgG responses for binding to SF162 gp140∆V2 (Fig. 5C), indicating that these are 317 

distinct immune measurements.   318 

 319 

 320 

DISCUSSION 321 

Here we report on the detailed binding specificities, avidity, kinetics and functional correlations 322 

of antibodies generated by immunization of rhesus macaques with an HIV-1 envelope protein 323 

(SF162∆V2 gp140) cross-linked with a CD4 mimetic miniprotein, M64U1 (Bogers et al, 324 

submitted). Our findings demonstrate that cross-linking of the CD4 mimetic M64U1 with gp140 325 

significantly impacts the kinetics, binding specificity, avidity and ADCC activity of the vaccine-326 

elicited antibodies compared to that of gp140 protein alone. Comparison of the binding antibody 327 

responses between the gp140 and the gp140-M64U1 groups revealed an accelerated 328 

development of anti-Env binding responses in the gp140-M64U1 group, as indicated by higher 329 

binding to gp120 and gp140 Env proteins compared to the gp140 alone group at wk 6 (post 2nd 330 

immunization) (Fig.1, Table 2). However, Env binding responses became comparable by the 331 

time antibody responses peaked (at wk 26 and wk 38, post 3rd and 4th immunization, 332 

respectively), whereas binding to a linear C1 epitope was higher for the gp140 group compared 333 



to the gp140-M64U1 group at wk 26. Antibody responses against M64U1 or CD4 were not 334 

measured in this current study. Follow-up studies could examine whether anti-immunogen 335 

responses were elicited and could have impacted gp140 antibody responses in the gp140-336 

M64U1 group following later boosts.  337 

  338 

In previous study in rabbits (42), the gp140-M64U1 complex elicited significant levels of CD4i 339 

antibodies as measured by absorption/depletion with gp120 proteins carrying the I420R 340 

mutation, which is critical for binding by 17b-like CD4i antibodies, and by neutralization of a HIV-341 

1 virus with and without the presence of soluble CD4. In the current NHP study, no significant 342 

17b-like CD4i antibody responses were detected in either the gp140 or the gp140-M64U1 group 343 

when examining the differential binding of serum to gp120 core protein with and without the 344 

I420R mutation (Fig. 3A). Another difference between the previous rabbit study and the current 345 

macaque study is the higher levels of neutralizing antibodies directed to the CD4i epitopes 346 

observed in the rabbit study following gp140-M64U1 immunization but not the current macaque 347 

study (Bogers et al., submitted). Apart from differences in study methods, species differences 348 

may play a role in the difference observed. Macaques have intrinsic expression of CD4 349 

molecules along with other surface molecules including co-receptor and DC-SIGNs (61-63) that 350 

could interact with and SIV and HIV Env, which likely affects the responses of macaques to a 351 

miniCD4-crosslinked Env.  One concern for the use of CD4 mimetic proteins in vaccine 352 

regimens is the potential effect on the development of CD4bs antibodies. Broadly neutralizing 353 

CD4bs antibodies have been shown to recognize a site of “vulnerability” on the HIV-1 Env (64). 354 

Binding antibodies directed to CD4bs are commonly induced in HIV infection (57), but 355 

unfortunately those with broadly neutralizing activity seem to develop in a smaller subset of 356 

individuals (57, 65). CD4bs antibodies were detected in the gp140 group in the rabbit study (42). 357 

In the current study, we also found comparable levels of CD4bs antibodies in both the gp140 358 

and the gp140-M64U1 groups (Fig. 3A).  359 



One surprising finding in this study is the impact of M64U1-Env crosslinking on the 360 

kinetics, specificity, and avidity of antibody responses. Both the binding magnitude and avidity of 361 

the Env-specific antibodies were significantly higher (FDR_p=0.014) for the gp140-M64U1 362 

group at wk 6 (post 2nd immunization), although the two groups either were comparable or the 363 

gp140 group trended higher than the gp140-M64U1 group at later time points (Fig. 1A-1D, and 364 

Fig. 3C, Table 2). The mechanisms for the faster development of antibody responses in the 365 

gp140-M64U1 group are not clear and warrant further investigation, including whether 366 

crosslinking of M64U1 and gp140 can affect the stability and in vivo trafficking of the Env 367 

protein, and how the crosslinking with M64U1 affects the interaction of Env with cells of both the 368 

adaptive and innate immune systems. In particular, exploring of the B cell responses in this 369 

macaque study revealed higher proportions of Env-specific B cells in peripheral blood 370 

mononuclear cells (PBMC) (Bogers et al., submitted). Bogers et al. hypothesized that 371 

crosslinking with M64U1 interferes with CD4 receptor engagement, thus improving CD4 T cell-372 

dependent immune responses.  373 

In contrast to the binding results with the Env proteins, binding to a C1 epitope, C1_104: 374 

MQEDVISLWDQSLKPCVKLTPLCV (sequence matches that of AE clade consensus), was 375 

significantly higher for the gp140 group compared to the gp140-M64U1 group at the peak 376 

immunity time point of wk 26, as shown by both linear epitope mapping microarray and by 377 

BAMA (Fig. 2A, 2B, and 2F, Table 2). Plasma IgA responses to this same epitope were 378 

positively correlated with HIV-1 risk in the human RV144 vaccine clinical trial (20). Quantification 379 

of the anti-C1.2 IgA response was not possible in this study due to the low levels of overall IgA 380 

responses. Characterization of IgA responses against this C1 epitope and its correlation with 381 

ADCC response warrant further investigation. In addition, even though conformational C1-382 

binding IgA has been indicated as potentially blocking IgG-mediated ADCC activity (66) and 383 

monoclonal IgG antibodies targeting conformational C1 epitopes can synergize with V2 384 



antibodies for increased ADCC and neutralizing activities (50), the role of C1-linear binding IgG 385 

in vaccine protection is not yet understood. 386 

Another interesting finding in the study was the significantly higher ADCC activity in the 387 

sera of animals in the gp140-M64U1 group at wk26 (Bogers et al., submitted, and Table 2). 388 

ADCC activity was not measured for wk 6 serum, the only time point where Env-binding 389 

magnitude was higher in the gp140-M64U1 group compared to the gp140 group. ADCC activity 390 

at wk 26 significantly correlated with wk6 Env binding magnitude and off-rate (Fig. 4C and D), 391 

but not with wk26 (contemporary) binding magnitude or off-rate (Table 3). The brisk and avid 392 

antibody response may be a biomarker for another underlying (and unmeasured) mechanism 393 

that led to enhanced ADCC function or alternatively, the early antibody response directly 394 

impacted the immune mechanisms resulting in higher ADCC function.  Interestingly, ADCC 395 

activity was also found to correlate with proportions of Env-specific B cells in peripheral blood in 396 

the same study (Bogers et al., submitted). Wk38 serum neutralizing activity, on the other hand, 397 

correlated with contemporary IgG binding magnitude (Fig. 4A) but not the contemporary IgG 398 

Env avidity; it also correlated with a faster off-rate (indicating lower avidity) at the earlier time 399 

point of wk6 (Fig. 4B) The discordant correlations of ADCC and neutralizing activities with 400 

binding and avidity are in agreement with the observations from Guan et al. (67), suggesting 401 

that different Env specificities are involved in ADCC and neutralizing anti-viral functions.  402 

  403 

Env-specific antibodies were detected in nasal samples in both the gp140 and gp140-404 

M64U1 groups, with no difference in IgG levels between groups. The level of Env-specific IgG in 405 

the nasal compartment did not correlate with serum IgG. This could be explained by selective 406 

transportation of serum IgG into mucosal compartments, variation in transportation efficiency 407 

among animals, or local production of IgG at the mucosal compartments. The Env gp140 used 408 

in this vaccine study does not contain V2. This was based on an earlier finding of higher titers of 409 

cross-reactive neutralizing antibodies in rhesus macaques immunized with SF162 V2-loop 410 



deleted gp140 compared to those immunized with SF162 gp140 (33, 68). In light of the RV144 411 

immune correlation found between plasma anti-V2 IgG and decreased risk of infection (20), 412 

further studies to improve upon this vaccine platform could include the addition of the V2 region 413 

in the vaccine immunogen to enable induction of V2-specific responses. 414 

 415 

In summary, data from this study indicate that immunizing with an Env protein cross-416 

linked to the CD4 mimetic miniprotein (M64U1) induced accelerated Env binding magnitude and 417 

avidity (as early as 2 weeks post 2nd immunization). In addition, crosslinking of gp140 with 418 

M64U1 modulated particular epitope specificities of antibody responses, such as inducing 419 

higher C1_104.AE responses in the gp140 group, likely due to alterations in the envelope 420 

structure that modulate exposure of this region upon CD4 binding. Lastly, ADCC activity at peak 421 

immunity time points (which were higher for the gp140-M64U1 group compared to the gp140 422 

group) correlated with the magnitude and avidity of Env binding responses at an earlier time 423 

point before the ADCC and binding antibody responses reached peak levels. Taken together, 424 

these data indicate that structural modification of HIV-1 Envelope immunogens by mimicking the 425 

CD4 bound state can modulate epitope exposure in a way that substantially impacts the 426 

specificity and function of the elicited antibody responses. 427 
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 443 

Figure Legends  444 

Figure 1. Longitudinal binding antibody responses for SF162 gp140∆V2 (vaccine strain) (A), 445 

ConS gp140 (B), MN gp120 (C), and MN gp41 (D). Shown are MFI binding values within the 446 

linear range of the assay for each antigen (1:400 for SF162 gp140∆V2 and MN gp41; 1:80 for 447 

ConS gp140 and MN gp120). The gp140 group is shown in blue, and the gp140-M64U1 group 448 

in red. For improved data visualization of data points with similar magnitude, the x-axis is plotted 449 

categorically with staggered symbols so each data point is visible. One animal in the gp140-450 

M64U1 died before wk107, and serum samples were not available for another 3 animals in the 451 

gp140-M64U1 group at wk107, therefore leaving 2 data points for wk107 and 5 data points for 452 

the gp140-M64U1 group. Green arrows below x-axis indicate time of vaccinations. FDR_p: 453 

Wilcoxon rank sum exact test p value controlled for false discovery rate (FDR) with the 454 

Benjamini-Hochberg method. * indicate FDR_p<0.05.  455 

 456 

Figure 2. Linear epitope specificity of serum IgG by epitope mapping (A-E) and BAMA (F). Wk 457 

26 mean binding intensity values of serum IgG for the gp140 only (B, D) and gp140-M64U1 458 

(C,E) groups are shown for overlapping peptides of 7 consensus gp120 (B,C) and gp41 ( D, E) 459 

sequences, respectively. Different colors represent different clade/circular recombinant forms 460 

(CRFs). Epitope regions identified in the study are indicated with text over horizontal bars in 461 



plots. (A.) Magnitude of binding to each epitope, calculated as the highest binding to a single 462 

peptide within each epitope region, wherein percentage numbers listed under each epitope are 463 

the response rates to the epitope by the 2 groups (gp140 vs. gp140-M64U1). The peptide 464 

ranges for the epitopes are: C1.1: #16-21; C1.2: #32-39; C2: #65-68; V3: #97-104; C4: #133-465 

139; V5-C5: #147-151; C5.1: #152-159; C5.2: #161-163; gp41-ID: #187-194. Sequences for all 466 

peptides have been previously published (47). Longitudinal binding to C1_104.AE peptide 467 

(corresponds to C1.2 epitope in epitope mapping) was measured by BAMA and is shown in 468 

panel F. Green arrows indicate time of immunizations. (G.) Structural modeling of the 469 

conformational change of the C1 epitope upon CD4 binding. The C1_104 epitope bends ~90 470 

degrees from the unliganded gp120 conformation (gp120 monomer from SOSIP Env trimer; 471 

PDB 4TVP; beige) to the CD4 liganded gp120 conformation (PDB 4RQS; light blue). Binding of 472 

CD4 (PDB 4QRS; green) results in a >30Å displacement of the C-terminal residue (stick 473 

representation) between the C1_104 epitope in the unliganded gp120 (red) versus the CD4 474 

bound C1_104 epitope (magenta).   475 

 476 

 477 

Figure 3. CD4bs and CD4i specificity (A) and off-rate measurements for SF162 gp140∆V2 (B), 478 

MN gp120, (C), MN gp41 (D), and ConS gp140 (E) in the 2 vaccine groups, and the group 479 

mean off-rates and avidity score values measured by SPR are shown (F). The cutoff for the 480 

CD4bs and CD4i differential binding assay (A) is 2.5-fold. For the CD4bs/CD4i differential 481 

binding assay, b12 (CD4bs mAb) was used as positive control for YU gp120 Core WT:D368R 482 

differential binding and RSC3 WT:∆371 differential binding (57), and 17b (CD4i mAb) was used 483 

as positive control for HXB2 8b core WT:I420R differential binding (28, 57). Serum samples 484 

were tested at 1:400. Control mAbs b12 and 17b were tested as 25 and 50 µg/ml, respectively. 485 

All baseline serum samples were negative for binding to both the WTs and mutants in this test 486 



panel. Green arrows indicate times of immunizations. FDR_p: Wilcoxon rank sum exact test p 487 

value controlled for false discovery rate (FDR) with the Benjamini-Hochberg method. * indicate 488 

FDR_p<0.05. Between-group comparison test results are shown in Table 2.    489 

 490 

Figure 4. Correlation of neutralization (A,B) and ADCC (C,D) activities with serum IgG binding 491 

magnitudes (A&C) and serum IgG avidity (B&D). Spearman correlation analysis was performed 492 

using SAS, and p values are FDR corrected across all between-group comparison tests (Table 493 

2) and this correlation test (Table 3). ** FDR_p<0.01; * FDR_p<0.05.  494 

 495 

Figure 5. Longitudinal binding of serum IgA to SF162 gp140∆V2 (A), wk 38 nasal IgG binding to 496 

SF162 gp140∆V2 (B), and correlation between serum and nasal IgG binding to SF162 497 

gp140∆V2 at wk 38 (C). MFI binding values shown for IgA binding are from 1:80 serum dilution. 498 

Binding specificities for nasal samples were normalized by total IgG concentration in each 499 

sample. Green arrows indicate time of immunizations *FDR_p<0.05 (Wilcoxon Rank Sum Exact 500 

Test, FDR correction with Benjamini & Hochberg method). 501 

 502 

Table 1. Immunization Schedule 503 

Group Immunogen Dose (mg) Adjuvant Route Time (Weeks) # of animals 

1 SF162 gp140∆V2 100 MF59 IM 0, 4, 24, 36, 107 N=6 

2 M64U1 50 MF59 IM 0, 4, 24, 36, 107 N=6 

3 M64U1-SF162 gp140∆V2 100 MF59 IM 0, 4, 24, 36, 107 N=6 

4 --- --- MF59 IM 0, 4, 24, 36, 107 N=6 

 504 

Table 2. Between group comparisons with False Discovery Rate [FDR] controlled p values.  505 

  Measurement Raw_p FDR_p 

Serum IgG Binding BAMA (MFI), gp140 vs gp140-M64U1 



SF162 gp140∆V2 /wk6 0.002 0.014* 
SF162 gp140∆V2 /wk26 0.485 0.614 
SF162 gp140∆V2 /wk38 0.026 0.071 
SF162 gp140∆V2 /wk113 0.017 0.052 
ConS gp140 /wk6 0.002 0.014* 
ConS gp140 /wk26 0.818 0.897 
ConS gp140 /wk38 0.015 0.052 
ConS gp140 /wk113 0.017 0.052 
MN gp120 /wk6 0.002 0.014* 
MN gp120 /wk26 0.818 0.897 
MN gp120 /wk38 0.093 0.189 
MN gp120 /wk113 0.030 0.075 
MN gp41 /wk6 0.002 0.014* 
MN gp41 /wk26 0.180 0.277 
MN gp41 /wk38 0.180 0.277 
MN gp41 /wk113 0.126 0.231 
C1_104.AE /wk6 0.180 0.277 
C1_104.AE /wk26 0.002 0.014* 
C1_104.AE /wk38 0.015 0.052 

  C1_104.AE /wk113 0.082 0.180 
Serum IgG Avidity SPR (off-rate, kd), gp140 vs gp140-M64U1 

SF162 gp140∆V2 /wk6 0.004 0.022* 
SF162 gp140∆V2 /wk26 0.699 0.813 
SF162 gp140∆V2 /wk38 0.041 0.098 

  SF162 gp140∆V2 /wk113 0.017 0.052 
$Serum IgG ADCC (Titer), gp140 vs gp140-M64U1 

SF162 gp140∆V2 /wk26 0.002 0.014* 
  SF162 gp140∆V2 /wk113 0.126 0.231 
$Serum Neutralization (ID50), gp140 vs gp140-M64U1 

SHIV-SF162P4 /wk38 0.026 0.071 
SHIV-SF162P4 /wk42 0.506 0.628 

  SHIV-SF162P4 /wk113 0.126 0.231 
Serum Linear Epitope Mapping (Signal Intensity), gp140 vs gp140-M64U1 

C1.1  /wk26 0.028 0.073 
C1.2 /wk26 0.009 0.038* 
C2  /wk26 0.318 0.422 
V3 /wk26 0.937 0.948 
C4 /wk26 0.387 0.502 
V5-C5 /wk26 0.242 0.343 
C5.1 /wk26 0.180 0.277 
C5.2 /wk26 0.937 0.948 



gp41-ID  /wk26 0.240 0.343 
  gp160 total /wk26 0.093 0.189 
CD4bs panel BAMA (WT:mutant ratio), gp140 vs gp140-M64U1 

RSC3 WT:∆371 /wk26 0.536 0.650 

  YU gp120 core WT:D368R /wk26 0.043 0.099 
Serum IgA Binding BAMA (MFI), gp140 vs gp140-M64U1 

SF162 gp140∆V2 /wk6 0.180 0.277 
SF162 gp140∆V2 /wk26 0.937 0.948 
SF162 gp140∆V2 /wk38 0.310 0.420 

  SF162 gp140∆V2 /wk113 0.247 0.343 
Nasal IgG Binding BAMA (Specific Activity), gp140 vs gp140-M64U1 
  SF162 gp140∆V2 /wk38 0.132 0.235 
Nasal IgG Binding BAMA (Specific Activity), gp140 vs mock control 
  SF162 gp140∆V2 /wk38 0.004 0.022* 
Nasal IgG Binding BAMA (Specific Activity), gp140-M64U1 vs M64U1 control 
  SF162 gp140∆V2 /wk38 0.015 0.052 

 506 

$Quantification of neutralization and ADCC responses are reported by Bogers et al. (submitted).   507 
Raw_p: Wilcoxon Rank Sum Exact Test [p-value], not corrected for multiple comparisons. 508 
FDR_p: Controlling the False Discovery Rate, FDR_p values are calculated according to 509 
Benjamini & Hochberg (1995). FDR was performed across Wilcoxon Rank Sum tests in Table 2 510 
and Spearman correlation test in Table 3 (57 tests total).  511 
P values in bold font are <0.05.  512 
* Significant difference between groups (FDR_p <0.05).    513 
 514 

Table 3. Spearman correlation test with False Discovery Rate (FDR) control for correlation 515 

between antibody functions (ADCC or neutralization) and binding antibody responses (avidity or 516 

IgG binding), and between nasal and serum IgG responses.  517 

Parameter 1 Parameter 2 Raw_p FDR_p Spearman 
r

wk26 ADCC (linear titer) wk6 off-rate (kd) 0.0074 0.035* -0.73
wk26 ADCC (linear titer) wk26 off-rate (kd) 0.95 0.948 -0.021
wk26 ADCC (linear titer) wk6 IgG binding (BAMA MFI) < 0.0001 0.003* 0.9
wk26 ADCC (linear titer) wk26 IgG binding (BAMA MFI) 0.91 0.948 0.035
wk38 neutralization (ID50 titer) wk6 off-rate (kd) 0.0003 0.006* 0.87
wk38 neutralization (ID50 titer) wk38 off-rate (kd) 0.75 0.850 -0.1
wk38 neutralization (ID50 titer) wk6 IgG binding (BAMA MFI) 0.2 0.298 -0.4
wk38 neutralization (ID50 titer) wk38 IgG binding (BAMA MFI) < 0.0001 0.003* 0.97

Nasal IgG (SA) Serum IgG binding (MFI) 0.56 0.661 0.19



Raw_p: Spearman's rank correlation test [p-value], not corrected for multiple comparisons. 518 

FDR_p: Controlling the False Discovery Rate, FDR_p values are calculated according to 519 
Benjamini & Hochberg (1995). FDR was performed across Wilcoxon Rank Sum tests in Table 2 520 
and Spearman correlation test in Table 3 (57 tests total). 521 

Bolded p values are <0.05. 522 

* Significant correlation after controlling for FDR (FDR_p<0.05) 523 

 524 
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