681 research outputs found
Ecological IVIS design : using EID to develop a novel in-vehicle information system
New in-vehicle information systems (IVIS) are emerging which purport to encourage more environment friendly or ‘green’ driving. Meanwhile, wider concerns about road safety and in-car distractions remain. The ‘Foot-LITE’ project is an effort to balance these issues, aimed at achieving safer and greener driving through real-time driving information, presented via an in-vehicle interface which facilitates the desired behaviours while avoiding negative consequences. One way of achieving this is to use ecological interface design (EID) techniques. This article presents part of the formative human-centred design process for developing the in-car display through a series of rapid prototyping studies comparing EID against conventional interface design principles. We focus primarily on the visual display, although some development of an ecological auditory display is also presented. The results of feedback from potential users as well as subject matter experts are discussed with respect to implications for future interface design in this field
Development of a single retention time prediction model integrating multiple liquid chromatography systems: Application to new psychoactive substances.
Database-driven suspect screening has proven to be a useful tool to detect new psychoactive substances (NPS) outside the scope of targeted screening; however, the lack of retention times specific to a liquid chromatography (LC) system can result in a large number of false positives. A singular stream-lined, quantitative structure-retention relationship (QSRR)-based retention time prediction model integrating multiple LC systems with different elution conditions is presented using retention time data (n = 1281) from the online crowd-sourced database, HighResNPS. Modelling was performed using an artificial neural network (ANN), specifically a multi-layer perceptron (MLP), using four molecular descriptors and one-hot encoding of categorical labels. Evaluation of test set predictions (n = 193) yielded coefficient of determination (R2) and mean absolute error (MAE) values of 0.942 and 0.583 min, respectively. The model successfully differentiated between LC systems, predicting 54%, 81% and 97% of the test set within ±0.5, ±1 and ±2 min, respectively. Additionally, retention times for an analyte not previously observed by the model were predicted within ±1 min for each LC system. The developed model can be used to predict retention times for all analytes on HighResNPS for each participating laboratory's LC system to further support suspect screening
Effects of Thyroxine Exposure on Osteogenesis in Mouse Calvarial Pre-Osteoblasts
The incidence of craniosynostosis is one in every 1,800-2500 births. The gene-environment model proposes that if a genetic predisposition is coupled with environmental exposures, the effects can be multiplicative resulting in severely abnormal phenotypes. At present, very little is known about the role of gene-environment interactions in modulating craniosynostosis phenotypes, but prior evidence suggests a role for endocrine factors. Here we provide a report of the effects of thyroid hormone exposure on murine calvaria cells. Murine derived calvaria cells were exposed to critical doses of pharmaceutical thyroxine and analyzed after 3 and 7 days of treatment. Endpoint assays were designed to determine the effects of the hormone exposure on markers of osteogenesis and included, proliferation assay, quantitative ALP activity assay, targeted qPCR for mRNA expression of Runx2, Alp, Ocn, and Twist1, genechip array for 28,853 targets, and targeted osteogenic microarray with qPCR confirmations. Exposure to thyroxine stimulated the cells to express ALP in a dose dependent manner. There were no patterns of difference observed for proliferation. Targeted RNA expression data confirmed expression increases for Alp and Ocn at 7 days in culture. The genechip array suggests substantive expression differences for 46 gene targets and the targeted osteogenesis microarray indicated 23 targets with substantive differences. 11 gene targets were chosen for qPCR confirmation because of their known association with bone or craniosynostosis (Col2a1, Dmp1, Fgf1, 2, Igf1, Mmp9, Phex, Tnf, Htra1, Por, and Dcn). We confirmed substantive increases in mRNA for Phex, FGF1, 2, Tnf, Dmp1, Htra1, Por, Igf1 and Mmp9, and substantive decreases for Dcn. It appears thyroid hormone may exert its effects through increasing osteogenesis. Targets isolated suggest a possible interaction for those gene products associated with calvarial suture growth and homeostasis as well as craniosynostosis. © 2013 Cray et al
Probing the local nature of excitons and plasmons in few-layer MoSâ‚‚
Excitons and plasmons are the two most fundamental types of collective electronic excitations occurring in solids. Traditionally, they have been studied separately using bulk techniques that probe their average energetic structure over large spatial regions. However, as the dimensions of materials and devices continue to shrink, it becomes crucial to understand how these excitations depend on local variations in the crystal- and chemical structure on the atomic scale. Here, we use monochromated low-loss scanning-transmission-electron-microscopy electron-energy-loss spectroscopy, providing the best simultaneous energy and spatial resolution achieved to-date to unravel the full set of electronic excitations in few-layer MoS₂ nanosheets over a wide energy range. Using first-principles, many-body calculations we confirm the excitonic nature of the peaks at ~ 2 and ~ 3 eV in the experimental electron-energy-loss spectrum and the plasmonic nature of higher energy-loss peaks. We also rationalise the non-trivial dependence of the electron-energy-loss spectrum on beam and sample geometry such as the number of atomic layers and distance to steps and edges. Moreover, we show that the excitonic features are dominated by the long wavelength (q = 0) components of the probing field, while the plasmonic features are sensitive to a much broader range of q-vectors, indicating a qualitative difference in the spatial character of the two types of collective excitations. Our work provides a template protocol for mapping the local nature of electronic excitations that open new possibilities for studying photo-absorption and energy transfer processes on a nanometer scale
The Global Diversity of Parasitic Isopods Associated with Crustacean Hosts (Isopoda: Bopyroidea and Cryptoniscoidea)
Parasitic isopods of Bopyroidea and Cryptoniscoidea (commonly referred to as epicarideans) are unique in using crustaceans as both intermediate and definitive hosts. In total, 795 epicarideans are known, representing ∼7.7% of described isopods. The rate of description of parasitic species has not matched that of free-living isopods and this disparity will likely continue due to the more cryptic nature of these parasites. Distribution patterns of epicarideans are influenced by a combination of their definitive (both benthic and pelagic species) and intermediate (pelagic copepod) host distributions, although host specificity is poorly known for most species. Among epicarideans, nearly all species in Bopyroidea are ectoparasitic on decapod hosts. Bopyrids are the most diverse taxon (605 species), with their highest diversity in the North West Pacific (139 species), East Asian Sea (120 species), and Central Indian Ocean (44 species). The diversity patterns of Cryptoniscoidea (99 species, endoparasites of a diverse assemblage of crustacean hosts) are distinct from bopyrids, with the greatest diversity of cryptoniscoids in the North East Atlantic (18 species) followed by the Antarctic, Mediterranean, and Arctic regions (13, 12, and 8 species, respectively). Dajidae (54 species, ectoparasites of shrimp, mysids, and euphausids) exhibits highest diversity in the Antarctic (7 species) with 14 species in the Arctic and North East Atlantic regions combined. Entoniscidae (37 species, endoparasites within anomuran, brachyuran and shrimp hosts) show highest diversity in the North West Pacific (10 species) and North East Atlantic (8 species). Most epicarideans are known from relatively shallow waters, although some bopyrids are known from depths below 4000 m. Lack of parasitic groups in certain geographic areas is likely a sampling artifact and we predict that the Central Indian Ocean and East Asian Sea (in particular, the Indo-Malay-Philippines Archipelago) hold a wealth of undescribed species, reflecting our knowledge of host diversity patterns
Nocturnal blood pressure fall as predictor of diabetic nephropathy in hypertensive patients with type 2 diabetes
<p>Abstract</p> <p>Background</p> <p>Hypertensive patients with reduced blood pressure fall (BPF) at night are at higher risk of cardiovascular events (CVE).</p> <p>Methods</p> <p>We evaluated in hypertensive diabetic patients, if a reduced nocturnal BPF can precedes the development of diabetic nephropathy (DN). We followed 70 patients with normal urinary albumin excretion (UAE) for two years. We performed 24-hours ambulatory BP monitoring in baseline and at the end of the study.</p> <p>Results</p> <p>Fourteen (20%) patients (GI) developed DN (N = 11) and/or CVE (n = 4). Compared to the remaining 56 patients (GII) in baseline, GI had similar diurnal systolic (SBP) and diastolic BP (DBP), but higher nocturnal SBP (138 ± 15 vs 129 ± 16 mmHg; p < 0.05) and DBP (83 ± 12 vs 75 ± 11 mmHg; p < 0,05). Basal nocturnal SBP correlated with occurrence of DN and CVE (R = 0.26; P < 0.05) and with UAE at the end of the study (r = 0.3; p < 0.05). Basal BPF (%) correlated with final UAE (r = -0.31; p < 0.05). In patients who developed DN, reductions occurred in nocturnal systolic BPF (12 ± 5 vs 3 ± 6%, p < 0,01) and diastolic BPF (15 ± 8 vs 4 ± 10%, p < 0,01) while no changes were observed in diurnal SBP (153 ± 17 vs 156 ± 16 mmHg, NS) and DBP (91 ± 9 vs 90 ± 7 mmHg, NS). Patients with final UAE < 20 μg/min, had no changes in nocturnal and diurnal BP.</p> <p>Conclusions</p> <p>Our results suggests that elevations in nocturnal BP precedes DN and increases the risk to develop CVE in hypertensive patients with T2DM.</p
Surface and Temporal Biosignatures
Recent discoveries of potentially habitable exoplanets have ignited the
prospect of spectroscopic investigations of exoplanet surfaces and atmospheres
for signs of life. This chapter provides an overview of potential surface and
temporal exoplanet biosignatures, reviewing Earth analogues and proposed
applications based on observations and models. The vegetation red-edge (VRE)
remains the most well-studied surface biosignature. Extensions of the VRE,
spectral "edges" produced in part by photosynthetic or nonphotosynthetic
pigments, may likewise present potential evidence of life. Polarization
signatures have the capacity to discriminate between biotic and abiotic "edge"
features in the face of false positives from band-gap generating material.
Temporal biosignatures -- modulations in measurable quantities such as gas
abundances (e.g., CO2), surface features, or emission of light (e.g.,
fluorescence, bioluminescence) that can be directly linked to the actions of a
biosphere -- are in general less well studied than surface or gaseous
biosignatures. However, remote observations of Earth's biosphere nonetheless
provide proofs of concept for these techniques and are reviewed here. Surface
and temporal biosignatures provide complementary information to gaseous
biosignatures, and while likely more challenging to observe, would contribute
information inaccessible from study of the time-averaged atmospheric
composition alone.Comment: 26 pages, 9 figures, review to appear in Handbook of Exoplanets.
Fixed figure conversion error
Evidence for association between the HLA-DQA locus and abdominal aortic aneurysms in the Belgian population: a case control study
BACKGROUND: Chronic inflammation and autoimmunity likely contribute to the pathogenesis of abdominal aortic aneurysms (AAAs). The aim of this study was to investigate the role of autoimmunity in the etiology of AAAs using a genetic association study approach with HLA polymorphisms. METHODS: HLA-DQA1, -DQB1, -DRB1 and -DRB3-5 alleles were determined in 387 AAA cases (180 Belgian and 207 Canadian) and 426 controls (269 Belgian and 157 Canadian) by a PCR and single-strand oligonucleotide probe hybridization assay. RESULTS: We observed a potential association with the HLA-DQA1 locus among Belgian males (empirical p = 0.027, asymptotic p = 0.071). Specifically, there was a significant difference in the HLA-DQA1*0102 allele frequencies between AAA cases (67/322 alleles, 20.8%) and controls (44/356 alleles, 12.4%) in Belgian males (empirical p = 0.019, asymptotic p = 0.003). In haplotype analyses, marginally significant association was found between AAA and haplotype HLA-DQA1-DRB1 (p = 0.049 with global score statistics and p = 0.002 with haplotype-specific score statistics). CONCLUSION: This study showed potential evidence that the HLA-DQA1 locus harbors a genetic risk factor for AAAs suggesting that autoimmunity plays a role in the pathogenesis of AAAs
Factors influencing the implementation, adoption, use, sustainability and scalability of eLearning for family medicine specialty training:A systematic review protocol
Background In 2013, there was a shortage of approximately 7.2 million health workers worldwide, which is larger among family physicians than among specialists. eLearning could provide a potential solution to some of these global workforce challenges. However, there is little evidence on factors facilitating or hindering implementation, adoption, use, scalability and sustainability of eLearning. This review aims to synthesise results from qualitative and mixed methods studies to provide insight on factors influencing implementation of eLearning for family medicine specialty education and training. Additionally, this review aims to identify the actions needed to increase effectiveness of eLearning and identify the strategies required to improve eLearning implementation, adoption, use, sustainability and scalability for family medicine speciality education and training. Methods A systematic search will be conducted across a range of databases for qualitative studies focusing on experiences, barriers, facilitators, and other factors related to the implementation, adoption, use, sustainability and scalability of eLearning for family medicine specialty education and training. Studies will be synthesised by using the framework analysis approach. Discussion This study will contribute to the evaluation of eLearning implementation, adoption, use, sustainability and scalability for family medicine specialty training and education and the development of eLearning guidelines for postgraduate medical education
Bilateral asynchronous acute epidural hematoma : a case report
BACKGROUND: Bilateral extradural hematomas have only rarely been reported in the literature. Even rarer are cases where the hematomas develop sequentially, one after removal of the other. Among 187 cases of operated epidural hematomas during past 4 years in our hospital, we found one case of sequentially developed bilateral epidural hematoma. CASE PRESENTATION: An 18-year-old conscious male worker was admitted to our hospital after a fall. After deterioration of his consciousness, an emergency brain CT scan showed a right temporoparietal epidural hematoma. The hematoma was evacuated, but the patient did not improve afterwards. Another CT scan showed contralateral epidural hematoma and the patient was reoperated. Postoperatively, the patient recovered completely. CONCLUSIONS: This case underlines the need for monitoring after an operation for an epidural hematoma and the need for repeat brain CT scans if the patient does not recover quickly after removal of the hematoma, especially if the first CT scan has been done less than 6 hours after the trauma. Intraoperative brain swelling can be considered as a clue for the development of contralateral hematoma
- …