381 research outputs found

    The 2019 eruption of recurrent nova V3890 Sgr: Observations by Swift, NICER, and SMARTS

    Get PDF
    V3890 Sgr is a recurrent nova that has been seen in outburst three times so far, with the most recent eruption occurring on 2019 August 27 ut. This latest outburst was followed in detail by the Neil Gehrels Swift Observatory, from less than a day after the eruption until the nova entered the Sun observing constraint, with a small number of additional observations after the constraint ended. The X-ray light curve shows initial hard shock emission, followed by an early start of the supersoft source phase around day 8.5, with the soft emission ceasing by day 26. Together with the peak blackbody temperature of the supersoft spectrum being ∼100 eV, these timings suggest the white dwarf mass to be high, ∼ 1.3, M·. The UV photometric light curve decays monotonically, with the decay rate changing a number of times, approximately simultaneously with variations in the X-ray emission. The UV grism spectra show both line and continuum emission, with emission lines of N, C, Mg, and O being notable. These UV spectra are best dereddened using a Small Magellanic Cloud extinction law. Optical spectra from SMARTS show evidence of interaction between the nova ejecta and wind from the donor star, as well as the extended atmosphere of the red giant being flash-ionized by the supersoft X-ray photons. Data from NICER reveal a transient 83 s quasi-periodic oscillation, with a modulation amplitude of 5 per cent, adding to the sample of novae that show such short variabilities during their supersoft phase

    Relationship between intratumoral expression of genes coding for xenobiotic-metabolizing enzymes and benefit from adjuvant tamoxifen in estrogen receptor alpha-positive postmenopausal breast carcinoma

    Get PDF
    INTRODUCTION: Little is known of the function and clinical significance of intratumoral dysregulation of xenobiotic-metabolizing enzyme expression in breast cancer. One molecular mechanism proposed to explain tamoxifen resistance is altered tamoxifen metabolism and bioavailability. METHODS: To test this hypothesis, we used real-time quantitative RT-PCR to quantify the mRNA expression of a large panel of genes coding for the major xenobiotic-metabolizing enzymes (12 phase I enzymes, 12 phase II enzymes and three members of the ABC transporter family) in a small series of normal breast (and liver) tissues, and in estrogen receptor alpha (ERα)-negative and ERα-positive breast tumors. Relevant genes were further investigated in a well-defined cohort of 97 ERα-positive postmenopausal breast cancer patients treated with primary surgery followed by adjuvant tamoxifen alone. RESULTS: Seven of the 27 genes showed very weak or undetectable expression in both normal and tumoral breast tissues. Among the 20 remaining genes, seven genes (CYP2A6, CYP2B6, FMO5, NAT1, SULT2B1, GSTM3 and ABCC11) showed significantly higher mRNA levels in ERα-positive breast tumors than in normal breast tissue, or showed higher mRNA levels in ERα-positive breast tumors than in ERα-negative breast tumors. In the 97 ERα-positive breast tumor series, most alterations of these seven genes corresponded to upregulations as compared with normal breast tissue, with an incidence ranging from 25% (CYP2A6) to 79% (NAT1). Downregulation was rare. CYP2A6, CYP2B6, FMO5 and NAT1 emerged as new putative ERα-responsive genes in human breast cancer. Relapse-free survival was longer among patients with FMO5-overexpressing tumors or NAT1-overexpressing tumors (P = 0.0066 and P = 0.000052, respectively), but only NAT1 status retained prognostic significance in Cox multivariate regression analysis (P = 0.0013). CONCLUSIONS: Taken together, these data point to a role of genes coding for xenobiotic-metabolizing enzymes in breast tumorigenesis, NAT1 being an attractive candidate molecular predictor of antiestrogen responsiveness

    Very Cold Gas and Dark Matter

    Get PDF
    We have recently proposed a new candidate for baryonic dark matter: very cold molecular gas, in near-isothermal equilibrium with the cosmic background radiation at 2.73 K. The cold gas, of quasi-primordial abundances, is condensed in a fractal structure, resembling the hierarchical structure of the detected interstellar medium. We present some perspectives of detecting this very cold gas, either directly or indirectly. The H2_2 molecule has an "ultrafine" structure, due to the interaction between the rotation-induced magnetic moment and the nuclear spins. But the lines fall in the km domain, and are very weak. The best opportunity might be the UV absorption of H2_2 in front of quasars. The unexpected cold dust component, revealed by the COBE/FIRAS submillimetric results, could also be due to this very cold H2_2 gas, through collision-induced radiation, or solid H2_2 grains or snowflakes. The γ\gamma-ray distribution, much more radially extended than the supernovae at the origin of cosmic rays acceleration, also points towards and extended gas distribution.Comment: 16 pages, Latex pages, crckapb macro, 3 postscript figures, uuencoded compressed tar file. To be published in the proceeedings of the "Dust-Morphology" conference, Johannesburg, 22-26 January, 1996, D. Block (ed.), (Kluwer Dordrecht

    The role of multiple marks in epigenetic silencing and the emergence of a stable bivalent chromatin state

    Get PDF
    We introduce and analyze a minimal model of epigenetic silencing in budding yeast, built upon known biomolecular interactions in the system. Doing so, we identify the epigenetic marks essential for the bistability of epigenetic states. The model explicitly incorporates two key chromatin marks, namely H4K16 acetylation and H3K79 methylation, and explores whether the presence of multiple marks lead to a qualitatively different systems behavior. We find that having both modifications is important for the robustness of epigenetic silencing. Besides the silenced and transcriptionally active fate of chromatin, our model leads to a novel state with bivalent (i.e., both active and silencing) marks under certain perturbations (knock-out mutations, inhibition or enhancement of enzymatic activity). The bivalent state appears under several perturbations and is shown to result in patchy silencing. We also show that the titration effect, owing to a limited supply of silencing proteins, can result in counter-intuitive responses. The design principles of the silencing system is systematically investigated and disparate experimental observations are assessed within a single theoretical framework. Specifically, we discuss the behavior of Sir protein recruitment, spreading and stability of silenced regions in commonly-studied mutants (e.g., sas2, dot1) illuminating the controversial role of Dot1 in the systems biology of yeast silencing.Comment: Supplementary Material, 14 page

    Prevalence of human papillomavirus antibodies in young female subjects in England

    Get PDF
    Sera from 1483 female subjects in England aged 10–29 years were tested. The age-standardised seroprevalence was 10.7% (95% confidence intervals 9.0–12.3) for human papillomavirus (HPV) 6, 2.7% (1.8–3.6) for HPV 11, 11.9% (10.2–13.6) for HPV 16, 4.7% (3.5–5.8) for HPV 18, and 20.7% (18.6–22.7) for any of the four types

    Inhibition of PIKfyve by YM-201636 Dysregulates Autophagy and Leads to Apoptosis-Independent Neuronal Cell Death

    Get PDF
    The lipid phosphatidylinositol 3,5-bisphosphate (PtdIns(3,5)P-2), synthesised by PIKfyve, regulates a number of intracellular membrane trafficking pathways. Genetic alteration of the PIKfyve complex, leading to even a mild reduction in PtdIns(3,5)P-2 results in marked neurodegeneration via an uncharacterised mechanism. In the present study we have shown that selectively inhibiting PIKfyve activity, using YM-201636, significantly reduces the survival of primary mouse hippocampal neurons in culture. YM-201636 treatment promoted vacuolation of endolysosomal membranes followed by apoptosis-independent cell death. Many vacuoles contained intravacuolar membranes and inclusions reminiscent of autolysosomes. Accordingly, YM-201636 treatment increased the level of the autophagosomal marker protein LC3-II, an effect that was potentiated by inhibition of lysosomal proteases, suggesting that alterations in autophagy could be a contributing factor to neuronal cell death

    Morphine metabolism, transport and brain disposition

    Get PDF
    The chemical structures of morphine and its metabolites are closely related to the clinical effects of drugs (analgesia and side-effects) and to their capability to cross the Blood Brain Barrier (BBB). Morphine-6-glucuronide (M6G) and Morphine-3-glucuronide (M3G) are both highly hydrophilic, but only M6G can penetrate the BBB; accordingly, M6G is considered a more attractive analgesic than the parent drug and the M3G. Several hypotheses have been made to explain these differences. In this review we will discuss recent advances in the field, considering brain disposition of M6G, UDP-glucoronosyltransferases (UGT) involved in morphine metabolism, UGT interindividual variability and transport proteins

    Factors affecting health-related quality of life in Thai children with thalassemia

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Knowledge of the factors associated with health-related quality of life (HRQOL) among patients with thalassemia is essential in developing more suitable clinical, counseling, and social support programs to improve treatment outcomes of these patients. In light of the limited research in this area, this study aims to examine factors associated with HRQOL among children and adolescents with thalassemia in Thailand.</p> <p>Methods</p> <p>A cross-sectional survey was conducted in three selected hospitals in Thailand during June to November 2006. PedsQL™ 4.0 Generic Core Scale (Thai version) was used to assess HRQOL in 315 thalassemia patients between 5 and 18 years of age. Other related clinical characteristics of the patients were collected via medical record review.</p> <p>Results</p> <p>The mean (SD) of the total summary score was 76.67 (11.40), while the means (SD) for the Physical Health Summary score and Psychosocial Health Summary score were 78.24 (14.77) and 75.54 (12.76), respectively. The school functioning subscale scored the lowest, with a mean of 67.89 (SD = 15.92). The following factors significantly affected the HRQOL of the patients: age; age at onset of anemia and age at first transfusion; pre-transfusion hemoglobin (Hb) level; receiving a blood transfusion during the previous three months; and disease severity. In addition, iron chelation therapy had a significant negative effect on HRQOL in the school functioning subscale. In contrast, serum ferritin level, frequency of blood transfusions per year, and gender were not significantly related to HRQOL among these patients. The results from multivariate analysis also confirmed these findings.</p> <p>Conclusions</p> <p>To improve HRQOL of thalassemia patients, suitable programs aimed at providing psychosocial support and a link between the patient, school officials, the family and the physician are important, especially in terms of improving the school functioning score. The findings also confirmed the importance of maintaining a pre-transfusion Hb level of at least 9-10.5 g/dL. In addition, special care and attention should be given to patients with a severe condition, and those who are receiving subcutaneous iron chelation therapy.</p

    Caloric Restriction Alters the Metabolic Response to a Mixed-Meal: Results from a Randomized, Controlled Trial

    Get PDF
    OBJECTIVES: To determine if caloric restriction (CR) would cause changes in plasma metabolic intermediates in response to a mixed meal, suggestive of changes in the capacity to adapt fuel oxidation to fuel availability or metabolic flexibility, and to determine how any such changes relate to insulin sensitivity (S(I)). METHODS: Forty-six volunteers were randomized to a weight maintenance diet (Control), 25% CR, or 12.5% CR plus 12.5% energy deficit from structured aerobic exercise (CR+EX), or a liquid calorie diet (890 kcal/d until 15% reduction in body weight)for six months. Fasting and postprandial plasma samples were obtained at baseline, three, and six months. A targeted mass spectrometry-based platform was used to measure concentrations of individual free fatty acids (FFA), amino acids (AA), and acylcarnitines (AC). S(I) was measured with an intravenous glucose tolerance test. RESULTS: Over three and six months, there were significantly larger differences in fasting-to-postprandial (FPP) concentrations of medium and long chain AC (byproducts of FA oxidation) in the CR relative to Control and a tendency for the same in CR+EX (CR-3 month P = 0.02; CR-6 month P = 0.002; CR+EX-3 month P = 0.09; CR+EX-6 month P = 0.08). After three months of CR, there was a trend towards a larger difference in FPP FFA concentrations (P = 0.07; CR-3 month P = 0.08). Time-varying differences in FPP concentrations of AC and AA were independently related to time-varying S(I) (P<0.05 for both). CONCLUSIONS: Based on changes in intermediates of FA oxidation following a food challenge, CR imparted improvements in metabolic flexibility that correlated with improvements in S(I). TRIAL REGISTRATION: ClinicalTrials.gov NCT00099151
    corecore