13 research outputs found

    A review of elliptical and disc galaxy structure, and modern scaling laws

    Full text link
    A century ago, in 1911 and 1913, Plummer and then Reynolds introduced their models to describe the radial distribution of stars in `nebulae'. This article reviews the progress since then, providing both an historical perspective and a contemporary review of the stellar structure of bulges, discs and elliptical galaxies. The quantification of galaxy nuclei, such as central mass deficits and excess nuclear light, plus the structure of dark matter halos and cD galaxy envelopes, are discussed. Issues pertaining to spiral galaxies including dust, bulge-to-disc ratios, bulgeless galaxies, bars and the identification of pseudobulges are also reviewed. An array of modern scaling relations involving sizes, luminosities, surface brightnesses and stellar concentrations are presented, many of which are shown to be curved. These 'redshift zero' relations not only quantify the behavior and nature of galaxies in the Universe today, but are the modern benchmark for evolutionary studies of galaxies, whether based on observations, N-body-simulations or semi-analytical modelling. For example, it is shown that some of the recently discovered compact elliptical galaxies at 1.5 < z < 2.5 may be the bulges of modern disc galaxies.Comment: Condensed version (due to Contract) of an invited review article to appear in "Planets, Stars and Stellar Systems"(www.springer.com/astronomy/book/978-90-481-8818-5). 500+ references incl. many somewhat forgotten, pioneer papers. Original submission to Springer: 07-June-201

    Barley Inflorescence Architecture

    No full text

    Multi-parent populations in crops: a toolbox integrating genomics and genetic mapping with breeding

    Get PDF
    Crop populations derived from experimental crosses enable the genetic dissection of complex traits and support modern plant breeding. Among these, multi-parent populations now play a central role. By mixing and recombining the genomes of multiple founders, multi-parent populations combine many commonly sought beneficial properties of genetic mapping populations. For example, they have high power and resolution for mapping quantitative trait loci, high genetic diversity and minimal population structure. Many multi-parent populations have been constructed in crop species, and their inbred germplasm and associated phenotypic and genotypic data serve as enduring resources. Their utility has grown from being a tool for mapping quantitative trait loci to a means of providing germplasm for breeding programmes. Genomics approaches, including de novo genome assemblies and gene annotations for the population founders, have allowed the imputation of rich sequence information into the descendent population, expanding the breadth of research and breeding applications of multi-parent populations. Here, we report recent successes from crop multi-parent populations in crops. We also propose an ideal genotypic, phenotypic and germplasm 'package' that multi-parent populations should feature to optimise their use as powerful community resources for crop research, development and breeding

    Genetics of Whole Plant Morphology and Architecture

    No full text
    Plant architectural features directly impact plant fitness and adaptation, and traits related to plant morphology and development represent important targets for crop breeding. Decades of mutagenesis research have provided a wealth of mutant resources, making barley (Hordeum vulgare L.) an interesting model for genetic dissection of grass morphology and architecture. Recent advances in genomics have propelled the identification of barley genes controlling different aspects of shoot and root development. In addition to gene discovery, it is important to understand the interplay between different developmental processes in order to support breeding of improved ideotypes for sustainable barley production under different climatic conditions. The purpose of the present chapter is to: (i) provide an overview of the morphology and development of shoot and root structures in barley; (ii) discuss novel insights into the genetic, molecular and hormonal mechanisms regulating root and shoot development and architecture; and (iii) highlight the genetic and physiological interactions among organs and traits with special focus on correlations between leaf and tiller development, flowering and tillering, as well as row-type and tillering
    corecore