40 research outputs found

    Human pancreatic islet transplantation: an update and description of the establishment of a pancreatic islet isolation laboratory

    Get PDF
    Type 1 diabetes mellitus (T1DM) is associated with chronic complications that lead to high morbidity and mortality rates in young adults of productive age. Intensive insulin therapy has been able to reduce the likelihood of the development of chronic diabetes complications. However, this treatment is still associated with an increased incidence of hypoglycemia. In patients with "brittle T1DM", who have severe hypoglycemia without adrenergic symptoms (hypoglycemia unawareness), islet transplantation may be a therapeutic option to restore both insulin secretion and hypoglycemic perception. The Edmonton group demonstrated that most patients who received islet infusions from more than one donor and were treated with steroid-free immunosuppressive drugs displayed a considerable decline in the initial insulin independence rates at eight years following the transplantation, but showed permanent C-peptide secretion, which facilitated glycemic control and protected patients against hypoglycemic episodes. Recently, data published by the Collaborative Islet Transplant Registry (CITR) has revealed that approximately 50% of the patients who undergo islet transplantation are insulin independent after a 3-year follow-up. Therefore, islet transplantation is able to successfully decrease plasma glucose and HbA1c levels, the occurrence of severe hypoglycemia, and improve patient quality of life. The goal of this paper was to review the human islet isolation and transplantation processes, and to describe the establishment of a human islet isolation laboratory at the Endocrine Division of the Hospital de Clínicas de Porto Alegre - Rio Grande do Sul, Brazil

    Absence of diabetic retinopathy in a patient who has had diabetes mellitus for 69 years, and inadequate glycemic control: case presentation

    Get PDF
    The main risk factors for the development and progression of diabetic retinopathy (DR) are chronic hyperglycemia, disease duration and systemic blood pressure. So far chronic hyperglycemia is the strongest evidence concerning the risk of developing DR. However there are some patients with poor metabolic control who never develop this diabetic complication. We present a case of a 73-year-old woman with type 1 diabetes mellitus, diagnosed 69 years ago. The patient is 73 years old, with no evidence of DR, despite poor glycemic control and several risk factors for DR. This case suggests the presence of a possible protection factor, which could be genetic

    β-Cells with Relative Low HIMP1 Overexpression Levels in a Transgenic Mouse Line Enhance Basal Insulin Production and Hypoxia/Hypoglycemia Tolerance

    Get PDF
    Rodent pancreatic β-cells that naturally lack hypoglycemia/hypoxia inducible mitochondrial protein 1 (HIMP1) are susceptible to hypoglycemia and hypoxia influences. A linkage between the hypoglycemia/hypoxia susceptibility and the lack of HIMP1 is suggested in a recent study using transformed β-cells lines. To further illuminate this linkage, we applied mouse insulin 1 gene promoter (MIP) to control HIMP1-a isoform cDNA and have generated three lines (L1 to L3) of heterozygous HIMP1 transgenic (Tg) mice by breeding of three founders with C57BL/6J mice. In HIMP1-Tg mice/islets, we performed quantitative polymerase chain reaction (PCR), immunoblot, histology, and physiology studies to investigate HIMP1 overexpression and its link to β-cell function/survival and body glucose homeostasis. We found that the HIMP1 level increased steadily in β-cells of L1 to L3 heterozygous HIMP1-Tg mice. HIMP1 overexpression at relatively lower levels in L1 heterozygotes results in a negligible decline in blood glucose concentrations and an insignificant elevation in blood insulin levels, while HIMP1 overexpression at higher levels are toxic, causing hyperglycemia in L2/3 heterozygotes. Follow-up studies in 5–30-week-old L1 heterozygous mice/islets found that HIMP1 overexpression at relatively lower levels in β-cells has enhanced basal insulin biosynthesis, basal insulin secretion, and tolerances to low oxygen/glucose influences. The findings enforced the linkage between the hypoglycemia/hypoxia susceptibility and the lack of HIMP1 in β-cells, and show a potential value of HIMP1 overexpression at relatively lower levels in modulating β-cell function and survival

    Rs1888747 polymorphism in the FRMD3 gene, gene and protein expression: Role in diabetic kidney disease

    Get PDF
    © 2016 Buffon et al. Background: We carried out a case-control study in patients with type 2 diabetes mellitus (T2DM) to evaluate the association between seven single nucleotide polymorphisms (SNPs) previously described to be linked to diabetic kidney disease (DKD) in type 1 diabetes mellitus (T1DM). Additionally, we evaluated gene and protein expression related to the polymorphism associated with DKD. Methods: The association study included 1098 T2DM patients (718 with DKD and 380 without DKD). Out of the 13 polymorphisms associated with DKD in a previous study with T1DM, seven were chosen for evaluation in this sample: rs1888747, rs9521445, rs39075, rs451041, rs1041466, rs1411766 and rs6492208. The expression study included 91 patients who underwent nephrectomy. Gene expression was assessed by RT-qPCR and protein expression in kidney samples was quantified by western blot and it localization by immunohistochemistry. Results: The C/C genotype of rs1888747 SNP was associated with protection for DKD (OR = 0.6, 95 % CI 0.3-0.9; P = 0.022). None of the other SNPs were associated with DKD. rs1888747 is located near FRMD3 gene. Therefore, FRMD3 gene and protein expression were evaluated in human kidney tissue according to rs1888747 genotypes. Gene and protein expression were similar in subjects homozygous for the C allele and in those carrying the G allele. Conclusions: Replication of the association between rs1888747 SNP and DKD in a different population suggests that this link is not the result of chance. rs1888747 SNP is located at the FRMD3 gene, which is expressed in human kidney. Therefore, this gene is a candidate gene for DKD. However, in this study, no rs1888747 genotype or specific allele effect on gene and/or protein expression of the FRMD3 gene was demonstrated

    Determinants of urinary albumin excretion within the normal range in patients with type 2 diabetes: the Randomised Olmesartan and Diabetes Microalbuminuria Prevention (ROADMAP) study

    Get PDF
    In contrast to microalbuminuric type 2 diabetic patients, the factors correlated with urinary albumin excretion are less well known in normoalbuminuric patients. This may be important because even within the normoalbuminuric range, higher rates of albuminuria are known to be associated with higher renal and cardiovascular risk. At the time of screening for the Randomised Olmesartan and Diabetes Microalbuminuria Prevention (ROADMAP) Study, the urinary albumin/creatinine ratio (UACR) was 0.44 mg/mmol in 4,449 type 2 diabetic patients. The independent correlates of UACR were analysed. Independent correlates of UACR during baseline were (in descending order): night-time systolic BP (r (s) = 0.19); HbA(1c) (r (s) = 0.18); mean 24 h systolic BP (r (s) = 0.16); fasting blood glucose (r (s) = 0.16); night-time diastolic BP (r (s) = 0.12); office systolic BP, sitting (r (s) = 0.11), standing (r (s) = 0.10); estimated GFR (r (s) = 0.10); heart rate, sitting (r (s) = 0.10); haemoglobin (r (s) = -0.10); triacylglycerol (r (s) = 0.09); and uric acid (r (s) = -0.08; all p a parts per thousand currency signaEuro parts per thousand 0.001). Significantly higher albumin excretion rates were found for the following categorical variables: higher waist circumference (more marked in men); presence of the metabolic syndrome; smoking (difference more marked in males); female sex; antihypertensive treatment; use of amlodipine; insulin treatment; family history of diabetes; and family history of cardiovascular disease (more marked in women). Although observational correlations do not prove causality, in normoalbuminuric type 2 diabetic patients the albumin excretion rate is correlated with many factors that are potentially susceptible to intervention. ClinicalTrials.gov ID no.: NCT00185159 This study was sponsored by Daichii-Sankyo.Nephrolog

    A modified Camel and Cactus Test detects presymptomatic semantic impairment in genetic frontotemporal dementia within the GENFI cohort

    Get PDF
    Impaired semantic knowledge is a characteristic feature of some forms of frontotemporal dementia (FTD), particularly the sporadic disorder semantic dementia. Less is known about semantic cognition in the genetic forms of FTD caused by mutations in the genes MAPT, C9orf72, and GRN. We developed a modified version of the Camel and Cactus Test (mCCT) to investigate the presence of semantic difficulties in a large genetic FTD cohort from the Genetic FTD Initiative (GENFI) study. Six-hundred-forty-four participants were tested with the mCCT including 67 MAPT mutation carriers (15 symptomatic, and 52 in the presymptomatic period), 165 GRN mutation carriers (33 symptomatic, 132 presymptomatic), and 164 C9orf72 mutation carriers (56 symptomatic, 108 presymptomatic) and 248 mutation-negative members of FTD families who acted as a control group. The presymptomatic mutation carriers were further split into those early and late in the presymptomatic period (more than vs. within 10 years of expected symptom onset). Groups were compared using a linear regression model, adjusting for age and education, with bootstrapping. Performance on the mCCT had a weak negative correlation with age (rho = −0.20) and a weak positive correlation with education (rho = 0.13), with an overall abnormal score (below the 5th percentile of the control population) being below 27 out of a total of 32. All three of the symptomatic mutation groups scored significantly lower than controls: MAPT mean 22.3 (standard deviation 8.0), GRN 24.4 (7.2), C9orf72 23.6 (6.5) and controls 30.2 (1.6). However, in the presymptomatic groups, only the late MAPT and late C9orf72 mutation groups scored lower than controls (28.8 (2.2) and 28.9 (2.5) respectively). Performance on the mCCT correlated strongly with temporal lobe volume in the symptomatic MAPT mutation group (rho > 0.80). In the C9orf72 group, mCCT score correlated with both bilateral temporal lobe volume (rho > 0.31) and bilateral frontal lobe volume (rho > 0.29), whilst in the GRN group mCCT score correlated only with left frontal lobe volume (rho = 0.48). This study provides evidence for presymptomatic impaired semantic knowledge in genetic FTD. The different neuroanatomical associations of the mCCT score may represent distinct cognitive processes causing deficits in different groups: loss of core semantic knowledge associated with temporal lobe atrophy (particularly in the MAPT group), and impaired executive control of semantic information associated with frontal lobe atrophy. Further studies will be helpful to address the longitudinal change in mCCT performance and the exact time at which presymptomatic impairment occurs

    Islet transplantation from a nationally funded UK centre reaches socially deprived groups and improves metabolic outcomes

    Get PDF
    Acknowledgements We thank the transplant nurses involved with the Scottish Islet Transplant Programme (T. McGilvray, J. Davidson, M. Phillips and C. Jansen) for help with participant assessment. We thank the Scottish National Blood Transfusion Services including the Histocompatibility and Immunogenetics Team for HLA typing and antibody screening, and the Tissue and Cells Team (A. Timpson, L. Fraser, L. Irvine and P. Henry) for islet isolation and product release testing. We acknowledge the Departments of Transplantation, Diabetes and Interventional Radiology at NHS Lothian for all aspects of patient care and the organ procurement programme. We thank J. Shaw and A. Brooks from the Department of Regenerative Medicine for Diabetes at the University of Newcastle for advice regarding CGMS. C-peptide assays were performed by the NIHR Cambridge Biomedical Research Centre, Core Biochemical Assay Laboratory. Funding: The Scottish Islet Transplant Programme is funded by the National Services Division. This research was funded by Diabetes UK (Biomedical and Psychosocial Outcomes of Islet Transplantation; Grant no. BDA 06/0003362), Diabetes Research and Wellness Foundation, Diabetes Foundation, Juvenile Diabetes Research Foundation and the Royal Infirmary Diabetes Treatment Trust Fund. Open Access: This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.Peer reviewedPublisher PD

    Alginate-deoxycholic Acid Interaction and Its Impact on Pancreatic ?-Cells and Insulin Secretion and Potential Treatment of Type 1 Diabetes

    No full text
    © 2016. Springer Science+Business Media New York.Introduction: The secondary bile acid, deoxycholic acid (DCA), has been shown to exert membrane stabilising effects on a pH sensitive delivery system for the oral delivery of insulin. However, its potential applications in the microencapsulation of pancreatic ß-cells using hydrogels and polyelectrolytes have not been investigated and may require refined microencapsulating methods. Thus, this study aimed to optimise a newly developed microencapsulating method for pancreatic ß-cell delivery (Ionic-Gelation-Vibrational-Jet-Flow; IGVJF) and examine the effects of DCA incorporation on ß-cells microcapsules, using various excipients. Methods: Ten different formulations were prepared (five controls and five tests containing DCA) utilising different concentrations of water soluble gel, polystyrenes, sodium alginate (SA), polyallylamine, and poly-L-ornithine (PLO), and different microencapsulating methods were screened for most uniform microcapsules. The net flow nozzle size ratio of inner:outer flow through the concentric system was examined for best microcapsules. ß-cell microcapsules for each formulation were analysed for cell biology and functions (insulin at 1 and 60 h), and microcapsules were examined for appearance. Results: The used IGVJF method produced best microcapsules when the inner:outer flow nozzle size is 120/200 µm. In addition, deoxycholic acid addition produced higher cell biological activity and functions, postmicroencapsulation, regardless of excipients’ ratio used. DCA has inhibitory effects on pro-inflammatory cytokine secretion by the microencapsulated cells, while microcapsule size and strength remained similar. Microcapsule morphology and membrane surface characteristics were similar for all formulations with noticeable improvements by DCA addition occurring at the lowest PLO concentrations. Conclusion: An inner:outer nozzle size of 120/200 µm, in the deployed microencapsulating method, in combination with the secondary bile acid deoxycholic acid, produced stable microcapsules with improved cell functionality, suggesting suitability for cell microencapsulation and transplantation
    corecore