40 research outputs found

    Impacts of carbohydrate-restricted diets on micronutrient intakes and status: a systematic review

    Get PDF
    A systematic review of published evidence on micronutrient intake/status with carbohydrate‐restricted diets (CRD) was conducted in Web of Science, Medline, Embase, Scopus, CENTRAL, and ClinicalTrials.gov up to October 2018. We identified 10 studies: seven randomized controlled trials (RCTs) (“Atkins”‐style, n = 5; “Paleolithic” diets, n = 2), two Atkins‐style noncontrolled trials and one cross‐sectional study. Prescribed carbohydrate varied 4% to 34% of energy intake. Only one noncontrolled trial prescribed multivitamin supplements. Dietary intakes/status were reported over 2 to 104 weeks, with weight losses from 2 to 9 kg. No diagnoses of deficiency were reported. Intakes of thiamine, folate, magnesium, calcium, iron, and iodine all decreased significantly (−10% to −70% from baseline) with any CRD types. Atkins diet trials (n = 6; 4%‐34%E carbohydrate) showed inconsistent changes in vitamin A, E, and β‐carotene intakes, while a single “Paleolithic” diet trial (28%E carbohydrate) reported increases in these micronutrients. One other “Paleolithic” diet (30%E carbohydrate) reported a rise in moderate iodine deficiency from 15% to 73% after 6 months. In conclusion, few studies have assessed the impacts of CRD on micronutrients. Studies with different designs point towards reductions in several vitamins and minerals, with potential risk of micronutrient inadequacies. Trial reporting standards are expected to include analysis of micronutrient intake/status. Micronutrients in foods and/or supplements should be considered when designing, prescribing or following CRDs

    Role of the monocarboxylate transporter MCT1 in the uptake of lactate during active recovery

    Get PDF
    Purpose We assessed the role of monocarboxylate transporter 1 (MCT1) on lactate clearance during an active recovery after high-intensity exercise, by comparing genetic groups based on the T1470A (rs1049434) MCT1 polymorphism, whose influence on lactate transport has been proven. Methods Sixteen young male elite field hockey players participated in this study. All of them completed two 400 m maximal run tests performed on different days, followed by 40 min of active or passive recovery. Lactate samples were measured immediately after the tests, and at min 10, 20, 30 and 40 of the recoveries. Blood lactate decreases were calculated for each 10-min period. Participants were distributed into three groups according to the T1470A polymorphism (TT, TA and AA). Results TT group had a lower blood lactate decrease than AA group during the 10?20 min period of the active recovery (p = 0.018). This period had the highest blood lactate for the whole sample, significantly differing from the other periods (p ? 0.003). During the passive recovery, lactate declines were constant except for the 0?10-min period (p ? 0.003), suggesting that liver uptake is similar in all the genetic groups, and that the difference seen during the active recovery is mainly due to muscle lactate uptake. Conclusions These differences according to the polymorphic variant T1470A suggest that MCT1 affects the plasma lactate decrease during a crucial period of active recovery, where the maximal lactate amount is cleared (i.e. 10?20 min period)

    Onset dynamics of type A botulinum neurotoxin-induced paralysis

    Get PDF
    Experimental studies have demonstrated that botulinum neurotoxin serotype A (BoNT/A) causes flaccid paralysis by a multi-step mechanism. Following its binding to specific receptors at peripheral cholinergic nerve endings, BoNT/A is internalized by receptor-mediated endocytosis. Subsequently its zinc-dependent catalytic domain translocates into the neuroplasm where it cleaves a vesicle-docking protein, SNAP-25, to block neurally evoked cholinergic neurotransmission. We tested the hypothesis that mathematical models having a minimal number of reactions and reactants can simulate published data concerning the onset of paralysis of skeletal muscles induced by BoNT/A at the isolated rat neuromuscular junction (NMJ) and in other systems. Experimental data from several laboratories were simulated with two different models that were represented by sets of coupled, first-order differential equations. In this study, the 3-step sequential model developed by Simpson (J Pharmacol Exp Ther 212:16–21,1980) was used to estimate upper limits of the times during which anti-toxins and other impermeable inhibitors of BoNT/A can exert an effect. The experimentally determined binding reaction rate was verified to be consistent with published estimates for the rate constants for BoNT/A binding to and dissociating from its receptors. Because this 3-step model was not designed to reproduce temporal changes in paralysis with different toxin concentrations, a new BoNT/A species and rate (kS) were added at the beginning of the reaction sequence to create a 4-step scheme. This unbound initial species is transformed at a rate determined by kS to a free species that is capable of binding. By systematically adjusting the values of kS, the 4-step model simulated the rapid decline in NMJ function (kS ≥0.01), the less rapid onset of paralysis in mice following i.m. injections (kS = 0.001), and the slow onset of the therapeutic effects of BoNT/A (kS < 0.001) in man. This minimal modeling approach was not only verified by simulating experimental results, it helped to quantitatively define the time available for an inhibitor to have some effect (tinhib) and the relation between this time and the rate of paralysis onset. The 4-step model predicted that as the rate of paralysis becomes slower, the estimated upper limits of (tinhib) for impermeable inhibitors become longer. More generally, this modeling approach may be useful in studying the kinetics of other toxins or viruses that invade host cells by similar mechanisms, e.g., receptor-mediated endocytosis

    Determinants of male reproductive health disorders: the Men in Australia Telephone Survey (MATeS)

    Get PDF
    Background: The relationship between reproductive health disorders and lifestyle factors in middle-aged and older men is not clear. The aim of this study is to describe lifestyle and biomedical associations as possible causes of erectile dysfunction (ED), prostate disease (PD), lower urinary tract symptoms (LUTS) and perceived symptoms of androgen deficiency (pAD) in a representative population of middle-aged and older men, using the Men in Australia Telephone Survey (MATeS). Methods: A representative sample (n = 5990) of men aged 40+ years, stratified by age and State, was contacted by random selection of households, with an individual response rate of 78%. All men participated in a 20-minute computer-assisted telephone interview exploring general and reproductive health. Associations between male reproductive health disorders and lifestyle and biomedical factors were analysed using multivariate logistic regression (odds ratio [95% confidence interval]). Variables studied included age, body mass index, waist circumference, smoking, alcohol consumption, physical activity, co-morbid disease and medication use for hypertension, high cholesterol and symptoms of depression. Results: Controlling for age and a range of lifestyle and co-morbid exposures, sedentary lifestyle and being underweight was associated with an increased likelihood of ED (1.4 [1.1-1.8]; 2.9 [1.5-5.8], respectively) and pAD (1.3 [1.1-1.7]; 2.7 [1.4-5.0], respectively. Diabetes and cardiovascular disease were both associated with ED, with hypertension strongly associated with LUTS and pAD. Current smoking (inverse association) and depressive symptomatology were the only variables independently associated with PD. All reproductive disorders showed consistent associations with depression (measured either by depressive symptomatology or medication use) in both age-adjusted and multivariate analyses. Conclusion: A range of lifestyle factors, more often associated with chronic disease, were significantly associated with male reproductive health disorders. Education strategies directed to improving general health may also confer benefits to male reproductive health.Carol A. Holden, Robert I. McLachlan, Marian Pitts, Robert Cumming, Gary Wittert, Johnathon P. Ehsani, David M. de Kretser, David J. Handelsma

    Lower bone turnover and relative bone deficits in men with metabolic syndrome: a matter of insulin sensitivity? The European Male Ageing Study

    Get PDF
    Summary We examined cross-sectional associations of metabolic syndrome and its components with male bone turnover, density and structure. Greater bone mass in men with metabolic syndrome was related to their greater body mass, whereas hyperglycaemia, hypertriglyceridaemia or impaired insulin sensitivity were associated with lower bone turnover and relative bone mass deficits. Introduction Metabolic syndrome (MetS) has been associated with lower bone turnover and relative bone mass or strength deficits (i.e. not proportionate to body mass index, BMI), but the relative contributions of MetS components related to insulin sensitivity or obesity to male bone health remain unclear. Methods We determined cross-sectional associations of MetS, its components and insulin sensitivity (by homeostatic model assessment-insulin sensitivity (HOMA-S)) using linear regression models adjusted for age, centre, smoking, alcohol, and BMI. Bone turnover markers and heel broadband ultrasound attenuation (BUA) were measured in 3129 men aged 40–79. Two centres measured total hip, femoral neck, and lumbar spine areal bone mineral density (aBMD, n = 527) and performed radius peripheral quantitative computed tomography (pQCT, n = 595). Results MetS was present in 975 men (31.2 %). Men with MetS had lower β C-terminal cross-linked telopeptide (β-CTX), N-terminal propeptide of type I procollagen (PINP) and osteocalcin (P < 0.0001) and higher total hip, femoral neck, and lumbar spine aBMD (P ≤ 0.03). Among MetS components, only hypertriglyceridaemia and hyperglycaemia were independently associated with PINP and β-CTX. Hyperglycaemia was negatively associated with BUA, hypertriglyceridaemia with hip aBMD and radius cross-sectional area (CSA) and stress–strain index. HOMA-S was similarly associated with PINP and β-CTX, BUA, and radius CSA in BMI-adjusted models. Conclusions Men with MetS have higher aBMD in association with their greater body mass, while their lower bone turnover and relative deficits in heel BUA and radius CSA are mainly related to correlates of insulin sensitivity. Our findings support the hypothesis that underlying metabolic complications may be involved in the bone’s failure to adapt to increasing bodily loads in men with MetS

    Magnetostratigraphy and sedimentary evolution of the late Miocene to early Pleistocene sediments, Quseir region, Egyptian Red Sea

    No full text
    An integrated sedimentological and magnetostratigraphic study has allowed a detailed understanding of the late Miocene to early Pleistocene evolution of the sediments in the Quseir region of the Egyptian Red Sea coast. Palaeomagnetic samples were collected from sections in six wadis, covering the Shagara Formation, the Gabir and Samh members of the Wardan Formation, and the Abu Dabbab Formation evaporites. Remanence properties are carried by magnetite, haematite and goethite. The characteristic remanence is typically carried by detrital magnetite and haematite, with more recent overprints predominantly associated with haematite and goethite, produced by the weathering of diagenetic pyrite. The magnetostratigraphy has allowed the following detailed age assignments for the lithostratigraphic units. The Shagara Formation ranges in age from late Pliocene (late Piacenzian) to middle Pleistocene (0.6–2.5Ma). The Gabir Member is latest Messinian to earliest Piacenzian in age (≈3.5–5.5Ma) and the Samh Member, late Tortonian to mid-Messinian (≈6.0–7.5Ma). The age of the top of the Abu Dabbab Formation is probably mid-Tortonian (≈8Ma). Disconformities occur between all the lithostratigraphic units, with a local angular unconformity between the Shagara and Wardan Formations. Lowstands in global sea level appear to have a strong influence on the timing of these disconformities. Characteristic mixed alluvial and reef facies of the Shagara formation are a response to the ephemeral wetter climate following the initiation of northern hemisphere glaciation at ≈2.4Ma, enhanced by rift-margin uplift of basement complexes to the west. This tectonic activity was concentrated in the early Piacenzian. The marine Gabir Member was deposited during the early Pliocene and latest Messinian high-sea-level stands. The late Tortonian/early Messinian age and sedimentological character of the Samh Member indicates this unit was affected by marine flooding events, which ultimately produced, during drawdown phases, the off-shore Zeit Formation evaporites in half-graben depocentres
    corecore