13 research outputs found

    Actin- and Dynamin-Dependent Maturation of Bulk Endocytosis Restores Neurotransmission following Synaptic Depletion

    Get PDF
    Bulk endocytosis contributes to the maintenance of neurotransmission at the amphibian neuromuscular junction by regenerating synaptic vesicles. How nerve terminals internalize adequate portions of the presynaptic membrane when bulk endocytosis is initiated before the end of a sustained stimulation is unknown. A maturation process, occurring at the end of the stimulation, is hypothesised to precisely restore the pools of synaptic vesicles. Using confocal time-lapse microscopy of FM1-43-labeled nerve terminals at the amphibian neuromuscular junction, we confirm that bulk endocytosis is initiated during a sustained tetanic stimulation and reveal that shortly after the end of the stimulation, nerve terminals undergo a maturation process. This includes a transient bulging of the plasma membrane, followed by the development of large intraterminal FM1-43-positive donut-like structures comprising large bulk membrane cisternae surrounded by recycling vesicles. The degree of bulging increased with stimulation frequency and the plasmalemma surface retrieved following the transient bulging correlated with the surface membrane internalized in bulk cisternae and recycling vesicles. Dyngo-4a, a potent dynamin inhibitor, did not block the initiation, but prevented the maturation of bulk endocytosis. In contrast, cytochalasin D, an inhibitor of actin polymerization, hindered both the initiation and maturation processes. Both inhibitors hampered the functional recovery of neurotransmission after synaptic depletion. Our data confirm that initiation of bulk endocytosis occurs during stimulation and demonstrates that a delayed maturation process controlled by actin and dynamin underpins the coupling between exocytosis and bulk endocytosis

    Silicon-isotope composition of diatoms as an indicator of past oceanic change

    No full text
    International audienceSilicon is essential for the growth of diatoms, a group of phytoplankton with opal (amorphous hydrated silica) shells. Diatoms largely control the cycling of silicon in the ocean and, conversely, diatom silica production rates can be limited by the availability of silicic acid. Diatoms are biogeochemically important in that they account for an estimated 75% of the primary production occurring in coastal and nutrient-replete waters1, rising to more than 90% during ice-edge blooms such as occur in the Ross Sea, off Antarctica. There are few means by which to reconstruct the history of diatom productivity and marine silicon cycling, and thus to explore the potential contribution of diatoms to past oceanic biogeochemistry or climate. Indices based on the accumulation of sedimentary opal are often biased by the winnowing and focusing of sediments and by opal dissolution. Normalization of opal accumulation records using particlereactive natural radionuclides may correct for sediment redistribution artefacts and the dissolution of opal within sediments, but not for opal dissolution before it arrives at the sea floor. Half of the opal produced in the euphotic zone may dissolve before sinking to a depth of 200m, constituting a potentially large bias to both normalized and uncorrected records of opal accumulation. Here we exploit the potential that variations in the ratio of 30Si to 28Si in sedimentary opal may provide information on past silicon cycling that is unbiased by opal dissolution. Our silicon stable-isotope measurements suggest that the percentage utilization of silicic acid by diatoms in the Southern Ocean during the last glacial period was strongly diminished relative to the present interglacial

    Transport of dissolved Si from soil to river: a conceptual mechanistic model

    Full text link
    This paper reviews the processes which determine the concentrations of dissolved silicon (DSi) in soil water and proposes a mechanistic model for understanding the transport of Si through a typical podzol soil to the river. DSi present in natural waters originates from the dissolution of mineral and amorphous Si sources in the soil. However, the DSi concentration in natural waters will be dependent on both dissolution and deposition/precipitation processes. The net DSi export is controlled by soil composition like (mineralogy and saturated porosity) as well as water composition (pH, concentrations of organic acids, CO2 and electrolytes). These state variables together with production, polymerization and adsorption equations constitute a mechanistic framework determining DSi concentrations. For a typical soil profile in a temperate climate, we discuss how the values of these key controls differ in each soil horizon and how it influences the DSi transport. Additionally, the impact of external forcings such as seasonal climatic variations and land use, is evaluated. This model is a first step to better understand Si transport processes in soils and should be further validated with field measurements
    corecore