22 research outputs found

    A novel gamma-N-methylaminobutyrate demethylating oxidase involved in catabolism of the tobacco alkaloid nicotine by Arthrobacter nicotinovorans pAO1

    Get PDF
    Nicotine catabolism, linked in Arthrobacter nicotinovorans to the presence of the megaplasmid pAO1, leads to the formation of gamma-N-methylaminobutyrate from the pyrrolidine ring of the alkaloid. Until now the metabolic fate of gamma-N-methylaminobutyrate has been unknown. pAO1 carries a cluster of ORFs with similarity to sarcosine and dimethylglycine dehydrogenases and oxidases, to the bifunctional enzyme methylenetetrahydrofolate dehydrogenase/cyclohydrolase and to formyltetrahydrofolate deformylase. We cloned and expressed the gene carrying the sarcosine dehydrogenase-like ORF and showed, by enzyme activity, spectrophotometric methods and identification of the reaction product as gamma-aminobutyrate, that the predicted 89 395 Da flavoprotein is a demethylating gamma-N-methylaminobutyrate oxidase. Site-directed mutagenesis identified His67 as the site of covalent attachment of FAD and confirmed Trp66 as essential for FAD binding, for enzyme activity and for the spectral properties of the wild-type enzyme. A K-m of 140 mum and a k(cat) of 800 s(-1) was determined when gamma-N-methylaminobutyrate was used as the substrate. Sarcosine was also turned over by the enzyme, but at a rate 200-fold slower than gamma-N-methylaminobutyrate. This novel enzyme activity revealed that the first step in channelling the gamma-N-methylaminobutyrate generated from nicotine into the cell metabolism proceeds by its oxidative demethylation

    siRNA Silencing of Proteasome Maturation Protein (POMP) Activates the Unfolded Protein Response and Constitutes a Model for KLICK Genodermatosis

    Get PDF
    Keratosis linearis with ichthyosis congenita and keratoderma (KLICK) is an autosomal recessive skin disorder associated with a single-nucleotide deletion in the 5′untranslated region of the proteasome maturation protein (POMP) gene. The deletion causes a relative switch in transcription start sites for POMP, predicted to decrease levels of POMP protein in terminally differentiated keratinocytes. To investigate the pathophysiology behind KLICK we created an in vitro model of the disease using siRNA silencing of POMP in epidermal air-liquid cultures. Immunohistochemical analysis of the tissue constructs revealed aberrant staining of POMP, proteasome subunits and the skin differentiation marker filaggrin when compared to control tissue constructs. The staining patterns of POMP siRNA tissue constructs showed strong resemblance to those observed in skin biopsies from KLICK patients. Western blot analysis of lysates from the organotypic tissue constructs revealed an aberrant processing of profilaggrin to filaggrin in samples transfected with siRNA against POMP. Knock-down of POMP expression in regular cell cultures resulted in decreased amounts of proteasome subunits. Prolonged silencing of POMP in cultured cells induced C/EBP homologous protein (CHOP) expression consistent with an activation of the unfolded protein response and increased endoplasmic reticulum (ER) stress. The combined results indicate that KLICK is caused by reduced levels of POMP, leading to proteasome insufficiency in differentiating keratinocytes. Proteasome insufficiency disturbs terminal epidermal differentiation, presumably by increased ER stress, and leads to perturbed processing of profilaggrin. Our findings underline a critical role for the proteasome in human epidermal differentiation

    Distinct Cytoplasmic and Nuclear Functions of the Stress Induced Protein DDIT3/CHOP/GADD153

    Get PDF
    DDIT3, also known as GADD153 or CHOP, encodes a basic leucine zipper transcription factor of the dimer forming C/EBP family. DDIT3 is known as a key regulator of cellular stress response, but its target genes and functions are not well characterized. Here, we applied a genome wide microarray based expression analysis to identify DDIT3 target genes and functions. By analyzing cells carrying tamoxifen inducible DDIT3 expression constructs we show distinct gene expression profiles for cells with cytoplasmic and nuclear localized DDIT3. Of 175 target genes identified only 3 were regulated by DDIT3 in both cellular localizations. More than two thirds of the genes were downregulated, supporting a role for DDIT3 as a dominant negative factor that could act by either cytoplasmic or nuclear sequestration of dimer forming transcription factor partners. Functional annotation of target genes showed cell migration, proliferation and apoptosis/survival as the most affected categories. Cytoplasmic DDIT3 affected more migration associated genes, while nuclear DDIT3 regulated more cell cycle controlling genes. Cell culture experiments confirmed that cytoplasmic DDIT3 inhibited migration, while nuclear DDIT3 caused a G1 cell cycle arrest. Promoters of target genes showed no common sequence motifs, reflecting that DDIT3 forms heterodimers with several alternative transcription factors that bind to different motifs. We conclude that expression of cytoplasmic DDIT3 regulated 94 genes. Nuclear translocation of DDIT3 regulated 81 additional genes linked to functions already affected by cytoplasmic DDIT3. Characterization of DDIT3 regulated functions helps understanding its role in stress response and involvement in cancer and degenerative disorders

    Free Cysteine Modulates the Conformation of Human C/EBP Homologous Protein

    Get PDF
    The C/EBP Homologous Protein (CHOP) is a nuclear protein that is integral to the unfolded protein response culminating from endoplasmic reticulum stress. Previously, CHOP was shown to comprise extensive disordered regions and to self-associate in solution. In the current study, the intrinsically disordered nature of this protein was characterized further by comprehensive in silico analyses. Using circular dichroism, differential scanning calorimetry and nuclear magnetic resonance, we investigated the global conformation and secondary structure of CHOP and demonstrated, for the first time, that conformational changes in this protein can be induced by the free amino acid l-cysteine. Addition of l-cysteine caused a significant dose-dependent decrease in the protein helicity – dropping from 69.1% to 23.8% in the presence of 1 mM of l-cysteine – and a sequential transition to a more disordered state, unlike that caused by thermal denaturation. Furthermore, the presence of small amounts of free amino acid (80 µM, an 8∶1 cysteine∶CHOP ratio) during CHOP thermal denaturation altered the molecular mechanism of its melting process, leading to a complex, multi-step transition. On the other hand, high levels (4 mM) of free l-cysteine seemed to cause a complete loss of rigid cooperatively melting structure. These results suggested a potential regulatory function of l-cysteine which may lead to changes in global conformation of CHOP in response to the cellular redox state and/or endoplasmic reticulum stress

    Anticancer drugs for the modulation of endoplasmic reticulum stress and oxidative stress

    Get PDF
    Prior research has demonstrated how the endoplasmic reticulum (ER) functions as a multifunctional organelle and as a well-orchestrated protein-folding unit. It consists of sensors which detect stress-induced unfolded/misfolded proteins and it is the place where protein folding is catalyzed with chaperones. During this folding process, an immaculate disulfide bond formation requires an oxidized environment provided by the ER. Protein folding and the generation of reactive oxygen species (ROS) as a protein oxidative byproduct in ER are crosslinked. An ER stress-induced response also mediates the expression of the apoptosis-associated gene C/EBP-homologous protein (CHOP) and death receptor 5 (DR5). ER stress induces the upregulation of tumor necrosis factor-related apoptosis inducing ligand (TRAIL) receptor and opening new horizons for therapeutic research. These findings can be used to maximize TRAIL-induced apoptosis in xenografted mice. This review summarizes the current understanding of the interplay between ER stress and ROS. We also discuss how damage-associated molecular patterns (DAMPs) function as modulators of immunogenic cell death and how natural products and drugs have shown potential in regulating ER stress and ROS in different cancer cell lines. Drugs as inducers and inhibitors of ROS modulation may respectively exert inducible and inhibitory effects on ER stress and unfolded protein response (UPR). Reconceptualization of the molecular crosstalk among ROS modulating effectors, ER stress, and DAMPs will lead to advances in anticancer therapy

    KRIT1 Regulates the Homeostasis of Intracellular Reactive Oxygen Species

    Get PDF
    KRIT1 is a gene responsible for Cerebral Cavernous Malformations (CCM), a major cerebrovascular disease characterized by abnormally enlarged and leaky capillaries that predispose to seizures, focal neurological deficits, and fatal intracerebral hemorrhage. Comprehensive analysis of the KRIT1 gene in CCM patients has suggested that KRIT1 functions need to be severely impaired for pathogenesis. However, the molecular and cellular functions of KRIT1 as well as CCM pathogenesis mechanisms are still research challenges. We found that KRIT1 plays an important role in molecular mechanisms involved in the maintenance of the intracellular Reactive Oxygen Species (ROS) homeostasis to prevent oxidative cellular damage. In particular, we demonstrate that KRIT1 loss/down-regulation is associated with a significant increase in intracellular ROS levels. Conversely, ROS levels in KRIT1−/− cells are significantly and dose-dependently reduced after restoration of KRIT1 expression. Moreover, we show that the modulation of intracellular ROS levels by KRIT1 loss/restoration is strictly correlated with the modulation of the expression of the antioxidant protein SOD2 as well as of the transcriptional factor FoxO1, a master regulator of cell responses to oxidative stress and a modulator of SOD2 levels. Furthermore, we show that the KRIT1-dependent maintenance of low ROS levels facilitates the downregulation of cyclin D1 expression required for cell transition from proliferative growth to quiescence. Finally, we demonstrate that the enhanced ROS levels in KRIT1−/− cells are associated with an increased cell susceptibility to oxidative DNA damage and a marked induction of the DNA damage sensor and repair gene Gadd45α, as well as with a decline of mitochondrial energy metabolism. Taken together, our results point to a new model where KRIT1 limits the accumulation of intracellular oxidants and prevents oxidative stress-mediated cellular dysfunction and DNA damage by enhancing the cell capacity to scavenge intracellular ROS through an antioxidant pathway involving FoxO1 and SOD2, thus providing novel and useful insights into the understanding of KRIT1 molecular and cellular functions
    corecore