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Abstract Prior research has demonstrated how the endoplas-
mic reticulum (ER) functions as amultifunctional organelle and
as a well-orchestrated protein-folding unit. It consists of sensors
which detect stress-induced unfolded/misfolded proteins and it
is the place where protein folding is catalyzed with chaperones.
During this folding process, an immaculate disulfide bond for-
mation requires an oxidized environment provided by the ER.
Protein folding and the generation of reactive oxygen species
(ROS) as a protein oxidative byproduct in ER are crosslinked.
An ER stress-induced response also mediates the expression of
the apoptosis-associated gene C/EBP-homologous protein

(CHOP) and death receptor 5 (DR5). ER stress induces the
upregulation of tumor necrosis factor-related apoptosis induc-
ing ligand (TRAIL) receptor and opening new horizons for
therapeutic research. These findings can be used to maximize
TRAIL-induced apoptosis in xenografted mice. This review
summarizes the current understanding of the interplay between
ER stress and ROS. We also discuss how damage-associated
molecular patterns (DAMPs) function as modulators of immu-
nogenic cell death and how natural products and drugs have
shown potential in regulating ER stress and ROS in different
cancer cell lines. Drugs as inducers and inhibitors of ROS
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modulation may respectively exert inducible and inhibitory ef-
fects on ER stress and unfolded protein response (UPR).
Reconceptualization of the molecular crosstalk among ROS
modulating effectors, ER stress, and DAMPs will lead to ad-
vances in anticancer therapy.
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Introduction

ER stress

Endoplasmic reticulum (ER) provides suitable folding to gen-
erate functional proteins. When the cellular environment
changes or cells are affected by DNA damage and oxidative
stress, misfolding proteins may accumulate in the ER leading
to increased ER stress. In response to ER stress, cells activate a
series of signaling proteins called unfolded protein response
(UPR) which favors suitable ER protein folding [1]. Both ER
stress and UPR activation are commonly reported in many
different cancers. Information obtained from high throughput
technologies has substantially improved our understanding of
the UPR. This particularly holds for stress sensors that balance
ER homeostasis in the protection of cell viability for mild ER
stress [2] or leads to intrinsic mitochondrial apoptosis [3] for
severe ER stress [4].

Rapidly emerging evidence highlight the key roles of ver-
satile regulators, particularly inositol-requiring protein 1α
(IRE1α), protein kinase RNA-like endoplasmic reticulum ki-
nase (PERK), and activating transcription factor 6 (ATF6) in
transducing information from the ER to the cytosol and nu-
cleus to mediate biological activities [1, 2, 5, 6]. It is known
that immunoglobulin-heavy-chain-binding protein (GRP78/
BIP)-bound stress sensors remain inactive and unfolded pro-
tein accumulations in the ER induce the activation of ATF6,
IRE1α, and PERK [7]. Unbinding GRP78 from ATF6 ex-
poses Golgi-localization sequence (GLS) within ATF6 [8] to
guide the protein to Golgi by interacting with the coat protein
II (COPII) complex [9], and within Golgi, it undergoes pro-
teolytic processing by site-1 protease (S1P) and site-1 protease
(S2P) [10]. The proteolytically processed ATF6 fragment
(ATF6f) acts as a transcription factor and moves into the nu-
cleus to transcriptionally upregulate target genes, including
GRP78, C/EBP-homologous protein (CHOP), and X-box
binding protein 1 (XBP1) [1, 11]. Unbinding of GRP78 from
IRE1 induced homodimer formation and the activation of
IRE1 through autophosphorylation [12]. Phospho-IRE1 ex-
cises a 26-bp fragment from unspliced XBP1 messenger
RNA (mRNA) to form spliced XBP1s mRNA after re-
ligation [13]. Nuclear accumulation of XBP1 protein follows
binding to UPR elements (UPREs) to trigger target genes.
PERK-induced phosphorylation of phospho-eukaryotic

initiation factor-alpha (eIF2α) results in translational inhibi-
tion [14]. However, ATF4 mRNA escapes eIF2α-mediated
translational suppression [15]. ATF4 transcriptionally upreg-
ulated CHOP and protein phosphatase 1 regulatory subunit
15A (PPP1R15A; GADD34) [16]. eIF2α dephosphorylation
was triggered by GADD34-bound protein phosphatase 1C
(PP1C) [17]. Next, we discuss another widely studied mech-
anism of cellular oxidative stress in ER.

Oxidative stress

The biology of free radical generation has attracted consider-
able scientific interest, and we now categorically know that
two mechanisms mediate the generation of reactive oxygen
species (ROS). Oxidative folding machinery induced by UPR
in the ER and mitochondria is associated with free radical
generation. Both ROS and reactive nitrogen species (RNS)
are generated in response to different cellular stresses and as
byproducts of normal cellular metabolism [18]. ROS and RNS
have opposite roles at varying concentrations. For example,
high concentrations of these species induced cellular damage
but was reported to be advantageous at low/moderate concen-
trations while working synchronously with cellular antioxi-
dant defense mechanisms which detect, respond to, and trans-
mit these signals to maintain cellular redox homeostasis [19].
In addition, NADPH oxidases (NOX) are responsible for ROS
generation. The modulation of NADPH oxidases by natural
products may change the ROS level [20].

Oxidative stress is a condition in which ROS is
overproduced and cannot be balanced by the available antiox-
idant machinery. Mitochondria are the major production sites
of the superoxide anion ozone (triplet stagemolecular oxygen)
that later forms secondary species, namely hydroxyl radical,
hydrogen peroxide, hydroperoxyl radical, and hypochlorous
acid [21]. Proper folding of proteins is a critical and multistep
process and requires an oxidizing–folding environment. This
particularly sensitive procedure is ROS dependent and occurs
in the ER where disulfide bond formation takes place during
the folding process. For example, the ER membrane-
associated oxidoreductin (ERO-1) uses a flavin adenine dinu-
cleotide (FAD)-dependent procedure to transfer electrons
from the 58-kDa protein disulfide isomerase of the ER (PDI)
[22] to molecular oxygen to oxidize PDI. If the machinery
recognizes faulty disulfide bonds, glutathione (GSH) reduces
disulfide bonds [23]. This way, the reduced glutathione/
oxidized glutathione (GSSH) ratio is decreased.

Increased protein-folding load in the ER may result in the
accumulation of ROS [1], and cells have evolved various
mechanisms to limit overproduction of free radicals.
Accordingly, PERK mediates phosphorylation of the nuclear
factor and erythroid 2-like 2 (NFE2L2; NRF2) [24] to facili-
tate its accumulation in the nucleus to upregulate the expres-
sion of a set of oxidant-detoxifying and antioxidant enzymes.
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This holds, for example, for NAD(P)H–quinone oxidoreduc-
tase, heme-oxygenase 1 (HO-1), and glutathione S-transferase
(GST) [25]. Nrf2-mediated HO-1 upregulation was found in
sulforaphane-treated bladder cancer T24 cells [26]. More im-
portantly, it has been shown that the ER stress-inducing chem-
ical tunicamycin weakly induced ROS accumulation in PERK
competent cells [27]. However, ROS accumulation was mark-
edly enhanced in PERK-deficient cells. This ROS-mediated
cell death was partly rescued by antioxidant N-acetyl-L-cyste-
ine (NAC) [27], suggesting that oxidative stress contributes to
PERK-mediated ER stress signaling. Next, we will discuss
how ROS causes ER stress.

Interplay of ROS and ER stress

It is noteworthy that PERK deficiency may suppress ROS-
induced ER stress leading to apoptosis in cancer cells [27].
Stable transfection of shRNA–PERK in breast cancer MDA-
MB468 cells impaired ROS-mediated ER stress induction.
Surprisingly, PERKwas noted to be a component of the protein
network connecting ER to mitochondria [28, 29]. It has been
shown experimentally that PERK+/+ murine embryonic fibro-
blast (MEF) cells had mitochondria interwoven with the ER
network. However, in PERK−/− MEF cells, co-localization of
mitochondria with ER was considerably lower [30].

Long-term ER stress may trigger two major pro-apoptotic
pathways [31–34]. One involves c-Jun N-terminal kinase
(JNK) and p38 mitogen-activated protein kinase (MAPK),
while the other involves CHOP. Accumulation of IRE-
mediated activation of JNK and p38 MAPK-mediated activa-
tion may lead to apoptosis [35, 36]. Other pro-apoptotic fac-
tors may be transcriptionally activated by CHOP [37, 38].

For the JNK pathway, an antimicrobial peptide pardaxin,
synthesized by the red sea flatfish Pardachirus marmoratus
[39], was used as an example. Pardaxin was reported to con-
tribute to antiproliferation and inducible apoptosis in several
cancer cells [40–42]. Both PERK activity and eIF2α were
noted in pardaxin-treated HeLa cells [43]. The nuclear trans-
location of ATF6 also indicated that pardaxin induced ER
stress in HeLa cells. Pardaxin also induced ROS production
to activate AP-1/c-Jun and NAC can revert it. C-Jun was also
demonstrated to be essential for apoptosis as caspase-3/-7 ac-
tivity was inhibited by c-Jun small interfering RNA (siRNA)
silenced cells. Therefore, it was concluded that both ER stress
and ROS-induced c-Jun were activated and reciprocally reg-
ulated in pardaxin-treated cancer cells [43]. Similar ROS-
inducible activation of JNK was noted in berberine-treated
breast cancer MDA-MB-231 and MCF-7 cells [44]. It subse-
quently triggered mitochondrial membrane depolarization and
led to apoptosis, although the role of ER stress in berberine
treatment was not addressed.

Interestingly, SMIP004 (N-(4-butyl-2-methyl-phenyl) acet-
amide) was reported to induce the activation of eIF2α and

IRE1 for apoptosis in prostate cancer cells and it was rescued
by siRNA application to knockdown both of them [45].
SMIP004 was also demonstrated to trigger both JNK and
p38 activity. Moreover, a decreased ratio of the reduced form
of GSH to oxidized GSH and ROS accumulation indicated
that SMIP004-induced apoptosis occurred through both ER
stress mechanisms. Sarsasapogenin, isolated from the plant
Anemarrhena asphodeloides Bunge, effectively induced apo-
ptosis via the upregulation of CHOP in HeLa cells [46].
Moreover, sarsasapogenin-induced ROS generation was
markedly inhibited upon NAC treatment, suggesting that
drug-induced ROS mediates ER stress.

Syn the t i c po lypheno l con juga t e , (E ) -3 - (3 ,5 -
dimethoxyphenyl)-1-(2-methoxyphenyl)prop-2-en-1-one
(DPP-23), also induces ROS-mediated apoptosis in several
cancer cells, and tumor growth was reduced in mice
xenografted with human colon cancer HCT116 cells [47].
Knockdown with siRNA IRE1α was reported to inhibit
caspase-4 cleavage in DPP-23-treated human pancreatic can-
cer MIA PaCa-2 cells. Accordingly, UPR was involved in
DPP-23-induced apoptosis. DPP-23 dose-responsively in-
duced the ROS generation in MIA PaCa-2 cells but not for
primary normal pancreatic cells. The oxidative stress role of
DPP-23-induced apoptosis was further validated by the find-
ing that NAC recovered DPP-23-induced GSH depletion in
PaCa-2 cells. Therefore, DPP-23 displayed selective ROS
generation in pancreatic cancer MIA PaCa-2 cells but
not for normal pancreatic cells. It also demonstrated that
oxidative stress is an upstream event of ER stress-
mediated apoptosis [47].

Carnosic acid, isolated from extracts of rosemary, was not-
ed to effectively enhance CHOP and ATF4 in renal carcinoma
Caki cells [48]. ROS was also enhanced in carnosic acid-
treated cancer cells, and NAC considerably reduced carnosic
acid-induced CHOP and ATF4 expression. Bortezomib and
dipyridamole worked with effective synergy to enhance ER
stress in treated cancer cells [49]. Importantly, relieving
ER stress by protein translation inhibitor cycloheximide
impaired drug-induced apoptosis. In addition, bortezomib and
dipyridamole treatment-depleted GSH and ROS levels
were drastically enhanced in leukemia and lymphoma
cells [49].

Damage-associated molecular patterns

Stressed, injured, or dying cells release or flag certain mole-
cules on their outer plasmamembrane that are functionally not
immunogenic within cells [50]. However, these molecules can
initiate an immunological response if released extracellularly
or displayed at the cell surface. These signals are termed
damage-associated molecular patterns (DAMPs) [51]. Some
DAMPs are passively released, namely high mobility group
proteins B1 (HMGB1). In contrast, some are actively secreted
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like adenosine triphosphate (ATP) and others (calreticulin
(CRT) and heat shock protein (HSP)-90), which appear on
the cell surface or accumulate on the outer leaflet of the plas-
ma membrane.

PERK induces phosphorylation of the eIF2α-facilitated
shipping of CRT from ER to the Golgi apparatus [52].
Mechanistically, it has been shown that targeted inhibition of
PERK and/or phosphatidylinositol-4,5-bisphosphate 3-ki-
nase, catalytic subunit alpha (PIK3CA; PI3K)/v-akt murine
thymoma viral oncogene homolog (AKT) dramatically re-
duced the CRT translocation [53]. For example, DNA-
dependent protein kinase, a catalytic subunit (DNA-PKcs)-
mediated phosphorylation of AKT, appeared to be necessary
for the cell surface appearance or CRT. Wogonin (5,7-dihy-
droxy-8-methoxyflavone) was noted to effectively
functionalize these pathways in gastric carcinoma MKN-45
cells [53]. Immunogenic cell death (ICD) is stress dependent
and requires ROS-based ER stress [54]. Several sources indi-
cated that ER stress and ROS synergistically activated dan-
ger signaling pathways that contributed to mobilization of
DAMPs to the extracellular space [55]. Surprisingly, com-
bining tunicamycin or thapsigargin with a chemotherapeutic
drug may induce apoptosis with an immunogenic effect in
nature as well [56]. It is concluded that ROS production
and ER stress are critical for ICD, and simultaneous
induction is vital to induce immunogenicity. ROS pro-
duction and ER stress considerably enhanced different
types of DAMP emission.

It has recently been convincingly demonstrated that ICD-
associated immunogenicity is significantly increased when
type II ICD inducers are used. Hypericin-based photodynamic
therapy (PDT) is primarily a type II ICD inducer and operates
through ROS-based ER stress. Mechanistically, it has been
shown that hypericin is a photosensitizer that promotes sub-
stantially enhanced ROS generation upon excitation by spe-
cific wavelength thus resulting in a targeted ROS-based ER
stress. Rapidly emerging evidence has shown that PDT in-
duces ICD in cancer cells [54, 57]. Vaccination of C57BL/6
mice with PDT-treated Lewis lung carcinoma (LLC) alone or
dendritic cells pulsed with PDT-treated LLCs revealed consid-
erably improved immunological responses against Lewis lung
carcinoma [58].

TRAIL-induced signaling and ER stress

Tumor necrosis factor-related apoptosis-inducing ligand
(TRAIL)-mediated signaling has emerged as one of the most
extensively studied pathways reported to selectively induce
apoptosis in cancer cells [59]. TRAIL signals intracellularly
through death receptors which belong to the tumor necrosis
factor receptor superfamily. Death receptors (DR4 and/or
DR5) possess a cytoplasmic death domain (DD). Death-
inducing signaling complex containing FADD and pro-

caspase-8 appear at the death receptor. However, rapidly ac-
cumulating experimental evidence has also revealed that the
expression and cell surface appearance of DRs is notably re-
duced in TRAIL-resistant cancer cells. Multiple signaling cas-
cades have been suggested to modulate TRAIL-induced sig-
naling. ER stress has also been noted to intricately stimulate
DR5 expression in cancer cells. In accordance with this ap-
proach, various natural and synthetic agents have been shown
to enhance expression of DR4 and DR5 in cancer cells. In the
following section, we discuss the relevant literature highlight-
ing natural agents reportedly involved in stimulating DR5
expression in cancer cells via the ER stress pathway.

PERK-eIF2α and ATF4-CHOP were notably enhanced in
p53-deficient colorectal cancer cells treated with zerumbone
(ZER) and celecoxib [60]. ROS scavengers drastically re-
duced CHOP expression. Interestingly, CHOP motif and
ATF/cAMP response element motifs were identified at the
proximal region of DR5 gene promoter. ATF3 depletion re-
duced DR5 expression and enforced expression of ATF3 sig-
nificantly increased DR5 expression [60]. Histone deacetylase
inhibitors (HDACi) also effectively induced activation of
PERK and eIF2α in p53-deficient colorectal cancer cells
[61]. Moreover, ATF4/ATF3/CHOP-mediated upregulation
of DR5 was also notable in p53-deficient cancer cells.
Agonistic anti-DR5 monoclonal antibody markedly enhanced
apoptosis in cells treated with HDACi [61]. PKCδ is a mem-
ber of the protein kinase C (PKC) family and undergoes
proteolytic cleavage between catalytic domain and regu-
latory domain in stressed cells. CHOP and DR5 were
not enhanced in ATF3- and ATF4-depleted cancer cells
treated with bortezomib, a proteasome inhibitor [62]. It
is also relevant to mention that MAPK–extracellular
signal-regulated kinase (ERK) inhibitor, U0126, also im-
paired bortezomib-mediated increase in DR5. ATF4, ATF3,
and CHOP were downregulated in PKCδ-deficient cancer
cells [62].

Casticin, isolated from Fructus viticis and Fructus
monensin, a polyether ionophore antibiotic enhanced DR5
via CHOP in different cancer cell lines [63, 64]. A recent
report found ER stress responses in TRAIL-treated cancer
cells including caspase-12 activation, while caspase-12 inhi-
bition prevented apoptosis [65]. Na(+)-H(+) exchanger 1
(NHE1) from negatively regulating CHOP in cancer cells.
NHE1 inhibitor cariporide-treated cells increased in the
CHOP-mediated upregulation of DR5 [66]. Parthenolide, a
sesquiterpene lactone, notably increased ATF4 and CHOP in
lung cancer cells. Moreover, depletion of either ATF4 or
CHOP severely abrogated the parthenolide-mediated upregu-
lation of DR5 [67]. More importantly, JNK and p38 MAPK
were also noted to be essential for stimulating expression of
DR5 in cancer cells by tocotrienols [68]. Other drugs with
similar effects for DR5-mediated ER stress pathways are sum-
marized in Table 1.
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Natural products with ROS and ER stress-modulating
effects

Although many natural products have been reported to be
ROS inducible [74–76], the role of ER stress was not empha-
sized. Recently, IRE1-mediated activation of JNK was found
to be related to ER stress-induced apoptosis as evidenced by
its pro-survival role during ER stress and the ability to reduce
oxidative stress. JNK3 level was considerably higher in BH3
mimetic S1-treated ovarian cancer SKOV3/DDP cells.
Targeted inhibition of JNK3 improved BH3 mimetic S1-
induced apoptosis in cancer cells [77]. Peroxiredoxin 4
(PRDX4), an ROS-reducing enzyme, facilitates the appropri-
ate folding of proteins in ER and frequently upregulates pro-
teins in high-grade glioma cells [78]. Piperlongumine, a
natural plant product effectively inhibited PRDX4 in
glioma cells [79]. B cell-specific transcription factor
(BACH2), a transcriptional repressor, has been reported
to inhibit expression of antioxidant enzymes (superoxide
dismutase and catalase) and antiapoptotic genes (BCL2,
Bcl-xL, and MCL-1). Bortezomib has been shown to down-
regulate antioxidant and antiapoptotic genes by promoting
nuclear accumulation of BACH2 in mantle cell lymphoma
Jeko and SP53 cells [80].

PERK and IRE1 have been noted to be active in colon
cancer SW480 cells treated with extracts of brown alga
Dictyopteris undulata (DUE) [81]. Moreover, proteolytically
processed ATF6 and CHOP were notably enhanced in DUE-
treated cancer cells. Knockdown by siRNA CHOP can reduce
DUE-induced apoptosis [81]. However, there is direct evi-
dence suggesting differential mechanisms of action through
which algal products exert influence. Fucoidan isolated from
the marine brown alga Fucus vesiculosus has been shown to
differentially modulate ER stress sensors [82]. For example,
GRP78 was decreased in the fucoidan-treated MDA-MB-231
breast cancer cells. However, in HCT116 colon cancer cells,

fucoidan treatment initially enhanced GRP78 expression,
followed by a reduction of GRP78 with increasing fucoidan
dosages. Moreover, phospho-IRE1 level was reduced
and the generation of spliced X-box binding protein 1
splicing (XBP-1s) from unspliced XBP-1 mRNA is also re-
duced upon treatment. Interestingly, eIF2α phosphorylation
and active eIF2α-mediated upregulation of CHOP were also
noticed in breast cancer cells [82].

Sulforaphane, an isothiocyanate isolated from cruciferous
vegetables, reportedly enhanced ER stress in terms of GRP78
and CHOP expression in bladder cancer T24 cells coupled
with Nrf2-mediated oxidative stress and apoptosis [26].
Using hepatocellular carcinoma Hep3B cells, sulforaph-
ane has also been reported to inhibit cell proliferation
and telomerase activity involving oxidative stress [83].
Pretreatment of NAC can restore the inhibitory effects
of hTERT expression and Akt phosphorylation by sulfo-
raphane. These results suggest that sulforaphane-induced
ROS generation may interplay with its ER stress effects.
Other drugs with similar effects for ROSmodulating effects to
induce and inhibit ER stress pathways are summarized in
Table 2.

Conclusion

Accumulating evidence demonstrates how oxidative stress is
generated from natural agents and synthetic chemicals that
trigger ER stress-induced apoptosis. This is of particular inter-
est for molecular oncologists. The functionalizing apoptotic
machinery through different signaling pathways could be an
effective approach in cancer treatment. ER stress-induced tran-
scriptional upregulation of TRAIL receptors can be used to
efficiently restore TRAIL-induced apoptosis in TRAIL-
resistant cancers. Several drugs with ROS inductions and re-
pressions have been suggested as being ER stress inducible

Table 1 Natural products that mediate oxidative stress to enhance DR5 via the ER stress pathway in different cancer cell lines

Agents (sources) Targets Cancer type/cell lines References

Verrucarin A (from several molds) ROS↑ Liver cancer cells (TRAIL-resistant Hep3B cells) [69]
p-eIF2α↑; CHOP↑

DR5↑

Guggulsterone (from Commiphora mukul) ROS↑ Liver cancer cells (Hep3B; HepG2) [70]
p-eIF2α↑; CHOP↑

DR5↑

Curcumin (from turmeric) ROS↑ Liposarcoma cells (SW872) [71, 72]
CHOP↑; SERCA2↓

DR5↑

5,7-Dimethoxyflavone (from Leptospermum scoparium) ROS↑ Liver cancer cells (Hep3B, Huh-7, Hep G2) [73]
CHOP↑; GPR78↑; ATF4↑

DR5↑

SERCA2 sarcoplasmic/endoplasmic reticulum calcium ATPase 2
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and inhibitory. With ROS modulation, the ER stress effects of
drugs were differentially modulated, making them more suit-
able for therapeutic purposes. The molecular approach needs
additional investigation, and data obtained from preclinical

studies will help us to identify natural products or synthetic
chemicals with suitable therapeutic efficiency but minimal side
effects. Pharmacokinetic studies will further shortlist candi-
dates in the ever increasing list of chemopreventive agents.

Table 2 Natural products modulating ROS and ER stress activity in cancer and other cell lines

Agents Targets Cancer and other cell lines References

ER stress inducers ω-Hydroxyundec-9-enoic
acid (ω-HUA) (from wild
rice (Oryza officinalis))

ROS↑ Lung cancer cells (H1299,
A549, HCC827)

[84]
CHOP↑

Cantharidin (from the insect
Mylabris phalerata Pallas)

ROS Lung cancer cells (H460) [85]
GRP78↑; IRE1α↑;

IRE1β↑; ATF6α↑

Ampelopsin (from Ampelopsis
grossedentata)

ROS Breast cancer cells (MCF-7;
MDA-MB-231)

[86]
GRP78↑; p-PERK↑; p-elF2α↑

cleaved ATF6α↑; CHOP↑

Licochalcone A (from licorice
Glycyrrhiza inflate)

ROS↑ Liver cancer cells (HepG2) [87]
CHOP↑

Isoliquiritigenin (from licorice
Glycyrrhiza glabra)

ROS↑ Cervical cancer cells (HeLa) [88]
p-eIF2α↑; GRP78↑

Brefeldin A (BFA) (from
Penicillium brefeldianum) [89]

ROS↑ Ovarian (OVCAR-3);
lung (A549); colorectal
(colo 205); breast (MDA-MB-231)
cancer cells

[90–93]
XBP1↑; GRP78↑

CHOP↑

Honokiol (HNK) (from Magnolia
obovata) [94]

ROS↑ Chondrosarcoma (JJ012 and
SW1353); gastric (AGS and
MKN-45) cancer cells

[95–98]
p-eIF2α↑; GRP78↑

CHOP↑

Delta(9)-tetrahydrocannabinol
(THC) (from Cannabis sativa)

ROS ↑ Glioblastoma cells (SF126, U251, U87) [99, 100]
p-eIF2α↑

Resveratrol (from grapes) [101] ROS↑ Colon (HT29); leukemia
(K562); nasopharyngeal
(NPC-TW076 and NPC-TW039);
gastric (SGC7901);
lung (A549) cancer cells

[102–106]
XBP1↑; p-eIF2α↑; GRP78↑

CHOP↑

PABA/NO (from plant) [107] ROS↑ Liver (HepG2); leukemia (HL60);
ovarian (SKOV3) cancer cells

[108, 109]
CHOP↑

Prodigiosin (from Serratia
marcescens)

ROS↑ Pancreatic (8898); breast cancer
cells (MCF-7 and MDA-MB-231)

[110, 111]
p-eIF2α↑; PERK↑;

GRP78↑; ATF6α↑

CHOP↑

ER stress inhibitors Benzodiazepines (from
Aspergillus ochraceus)

ROS↓ Mesencephalic Progenitors
(CSM14.1); neurons and
neural stem cells;
pheochromocytoma (PC12) cells

[112, 113]
GRP78↓

Baicalein (from Scutellaria
baicalensis Georgi) [114]

ROS↓ Neuronal HT22 cells;
cardiomyocytes

[114, 115]
CHOP↓

Cordycepin (3′-deoxyadenosin)
(from Cordyceps militaris) [116]

ROS↓ Neuronal HT22 cells [117]
CHOP↓

Kifunensine mannosidase
inhibitor (from Kitasporia
kifunensis)

ER alpha-mannosidase↓ Endometrial stromal cells
(HIESC); cervical
cancer cells (HeLa)

[118, 119]
CHOP↓

1-Deoxymannojirimycin
hydrochloride (from
Lonchocarpus sericeus)a

ER alpha-mannosidase↓ Pheochromocytoma (PC12) cells [120]
CHOP↓

PABA/NOO(2)-[2,4-dinitro-5-(N-methyl-N-4-carboxyphenylamino)phenyl]1-(N,N-methylamino) diazen-1-ium-1,2-diolate; prodigiosin 2-methyl-
3-pentyl-6-methoxyprodiginine
a This drug has a different reported effect that inhibition of alpha-mannosidase in liver cancer cells (7721) induces ER stress in terms of CHOP, XBP1, and
GRP78 overexpressions [121]
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