2,676 research outputs found

    Restoring observed classical behavior of the carbon nanotube field emission enhancement factor from the electronic structure

    Get PDF
    Experimental Fowler-Nordheim plots taken from orthodoxly behaving carbon nanotube (CNT) field electron emitters are known to be linear. This shows that, for such emitters, there exists a characteristic field enhancement factor (FEF) that is constant for a range of applied voltages and applied macroscopic fields FMF_\text{M}. A constant FEF of this kind can be evaluated for classical CNT emitter models by finite-element and other methods, but (apparently contrary to experiment) several past quantum-mechanical (QM) CNT calculations find FEF-values that vary with FMF_\text{M}. A common feature of most such calculations is that they focus only on deriving the CNT real-charge distributions. Here we report on calculations that use density functional theory (DFT) to derive real-charge distributions, and then use these to generate the related induced-charge distributions and related fields and FEFs. We have analysed three carbon nanostructures involving CNT-like nanoprotrusions of various lengths, and have also simulated geometrically equivalent classical emitter models, using finite-element methods. We find that when the DFT-generated local induced FEFs (LIFEFs) are used, the resulting values are effectively independent of macroscopic field, and behave in the same qualitative manner as the classical FEF-values. Further, there is fair to good quantitative agreement between a characteristic FEF determined classically and the equivalent characteristic LIFEF generated via DFT approaches. Although many issues of detail remain to be explored, this appears to be a significant step forwards in linking classical and QM theories of CNT electrostatics. It also shows clearly that, for ideal CNTs, the known experimental constancy of the FEF value for a range of macroscopic fields can also be found in appropriately developed QM theory.Comment: A slightly revised version has been published - citation below - under a title different from that originally used. The new title is: "Restoring observed classical behavior of the carbon nanotube field emission enhancement factor from the electronic structure

    The Gravity Dual of the Ising Model

    Get PDF
    We evaluate the partition function of three dimensional theories of gravity in the quantum regime, where the AdS radius is Planck scale and the central charge is of order one. The contribution from the AdS vacuum sector can - with certain assumptions - be computed and equals the vacuum character of a minimal model CFT. The torus partition function is given by a sum over geometries which is finite and computable. For generic values of Newton's constant G and the AdS radius L the result has no Hilbert space interpretation, but in certain cases it agrees with the partition function of a known CFT. For example, the partition function of pure Einstein gravity with G=3L equals that of the Ising model, providing evidence that these theories are dual. We also present somewhat weaker evidence that the 3-state and tricritical Potts models are dual to pure higher spin theories of gravity based on SL(3) and E_6, respectively.Comment: 42 page

    Modeling the Field Emission Enhancement Factor for Capped Carbon Nanotubes using the Induced Electron Density

    Full text link
    In many field electron emission experiments on single-walled carbon nanotubes (SWCNTs), the SWCNT stands on one of two well-separated parallel plane plates, with a macroscopic field FM applied between them. For any given location "L" on the SWCNT surface, a field enhancement factor (FEF) is defined as FLF_{\rm{L}}/FMF_{\rm{M}}, where FLF_{\rm{L}} is a local field defined at "L". The best emission measurements from small-radii capped SWCNTs exhibit characteristic FEFs that are constant (i.e., independent of FMF_{\rm{M}}). This paper discusses how to retrieve this result in quantum-mechanical (as opposed to classical electrostatic) calculations. Density functional theory (DFT) is used to analyze the properties of two short, floating SWCNTS, capped at both ends, namely a (6,6) and a (10,0) structure. Both have effectively the same height (∌5.46\sim 5.46 nm) and radius (∌0.42\sim 0.42 nm). It is found that apex values of local induced FEF are similar for the two SWCNTs, are independent of FMF_{\rm{M}}, and are similar to FEF-values found from classical conductor models. It is suggested that these induced-FEF values relate to the SWCNT longitudinal system polarizabilities, which are presumed similar. The DFT calculations also generate "real", as opposed to ``induced", potential-energy (PE) barriers for the two SWCNTs, for FM-values from 3 V/ÎŒ\mum to 2 V/nm. PE profiles along the SWCNT axis and along a parallel ``observation line" through one of the topmost atoms are similar. At low macroscopic fields the details of barrier shape differ for the two SWCNT types. Even for FM=0F_{\rm{M}}=0, there are distinct PE structures present at the emitter apex (different for the two SWCNTs); this suggests the presence of structure-specific chemically induced charge transfers and related patch-field distributions

    A combined approach for comparative exoproteome analysis of Corynebacterium pseudotuberculosis

    Get PDF
    Background: Bacterial exported proteins represent key components of the host-pathogen interplay. Hence, we sought to implement a combined approach for characterizing the entire exoproteome of the pathogenic bacterium Corynebacterium pseudotuberculosis, the etiological agent of caseous lymphadenitis (CLA) in sheep and goats. Results: An optimized protocol of three-phase partitioning (TPP) was used to obtain the C. pseudotuberculosis exoproteins, and a newly introduced method of data-independent MS acquisition (LC-MSE) was employed for protein identification and label-free quantification. Additionally, the recently developed tool SurfG+ was used for in silico prediction of sub-cellular localization of the identified proteins. In total, 93 different extracellular proteins of C. pseudotuberculosis were identified with high confidence by this strategy; 44 proteins were commonly identified in two different strains, isolated from distinct hosts, then composing a core C. pseudotuberculosis exoproteome. Analysis with the SurfG+ tool showed that more than 75% (70/93) of the identified proteins could be predicted as containing signals for active exportation. Moreover, evidence could be found for probable non-classical export of most of the remaining proteins. Conclusions: Comparative analyses of the exoproteomes of two C. pseudotuberculosis strains, in addition to comparison with other experimentally determined corynebacterial exoproteomes, were helpful to gain novel insights into the contribution of the exported proteins in the virulence of this bacterium. The results presented here compose the most comprehensive coverage of the exoproteome of a corynebacterial species so far

    The quantum Hall effect in graphene samples and the relativistic Dirac effective action

    Full text link
    We study the Euclidean effective action per unit area and the charge density for a Dirac field in a two--dimensional spatial region, in the presence of a uniform magnetic field perpendicular to the 2D--plane, at finite temperature and density. In the limit of zero temperature we reproduce, after performing an adequate Lorentz boost, the Hall conductivity measured for different kinds of graphene samples, depending upon the phase choice in the fermionic determinant.Comment: Conclusions extended. References added. 9 pages. 1 figur

    On the quantum mechanics of how an ideal carbon nanotube field emitter can exhibit a constant field enhancement factor

    Full text link
    Measurements of current-voltage characteristics from ideal carbon nanotube (CNT) field electron emitters of small apex radius have shown that these emitters can exhibit a linear Fowler-Nordheim (FN) plot [e.g., Dean and Chalamala, Appl. Phys. Lett., 76, 375, 2000]. From such a plot, a constant (voltage-independent) characteristic field enhancement factor (FEF) can be deduced. Over fifteen years later, this experimental result has not yet been convincingly retrieved from first-principles electronic structure calculations, or more generally from quantum mechanics (QM). On the contrary, several QM calculations have deduced that the characteristic FEF should be a function of the macroscopic field applied to the CNT. This apparent contradiction between experiment and QM theory has been an unexplained feature of CNT emission science, and has raised doubts about the ability of existing QM models to satisfactorily describe experimental CNT emission behavior. In this work we demonstrate, by means of a density functional theory analysis of single-walled CNTs "floating" in an applied macroscopic field, the following significant result. This is that agreement between experiment, classical-conductor CNT models and QM calculations can be achieved if the latter are used to calculate (from the "real" total-charge-density distributions initially obtained) the distributions of induced\textit{induced} charge-density, induced local fields and induced local FEFs. The present work confirms, more reliably and in significantly greater detail than in earlier work on a different system, that this finding applies to the common "post-on-a-conducing plane" situation of CNT field electron emission. This finding also brings out various further theoretical questions that need to be explored
    • 

    corecore