33,248 research outputs found

    Entanglement of two-qubit photon beam by magnetic field

    Full text link
    We have studied the possibility of affecting the entanglement measure of 2-qubit system consisting of two photons with different fixed frequencies but with two arbitrary linear polarizations, moving in the same direction, by the help of an applied external magnetic field. The interaction between the magnetic field and the photons in our model is achieved through intermediate electrons that interact with both the photons and the magnetic field. The possibility of exact theoretical analysis of this scheme is based on known exact solutions that describe the interaction of an electron subjected to an external magnetic field (or a medium of electrons not interacting with each other) with a quantized field of two photons. We adapt these exact solutions to the case under consideration. Using explicit wave functions for the resulting electromagnetic field, we calculate the entanglement measure of the photon beam as a function of the applied magnetic field and parameters of the electron medium

    Gains from the upgrade of the cold neutron triple-axis spectrometer FLEXX at the BER-II reactor

    Full text link
    The upgrade of the cold neutron triple-axis spectrometer FLEXX is described. We discuss the characterisation of the gains from the new primary spectrometer, including a larger guide and double focussing monochromator, and present measurements of the energy and momentum resolution and of the neutron flux of the instrument. We found an order of magnitude gain in intensity (at the cost of coarser momentum resolution), and that the incoherent elastic energy widths are measurably narrower than before the upgrade. The much improved count rate should allow the use of smaller single crystals samples and thus enable the upgraded FLEXX spectrometer to continue making leading edge measurements.Comment: 8 pages, 7 figures, 5 table

    Study of pressure effect on the magnetic penetration depth in MgB2_2

    Full text link
    A study of the pressure effect on the magnetic penetration depth λ\lambda in polycrystalline MgB2_{2} was performed by measuring the temperature dependence of the magnetization under an applied pressure of 0.15 and 1.13 GPa. We found that λ2\lambda^{-2} at low temperature is only slightly affected by pressure [Δλ2λ2=1.5(9)\frac{\Delta \lambda^{-2}}{\lambda^{-2}} = 1.5(9)%], in contrast to cuprate superconductors, where, in the same range of pressure, a very large effect on λ2\lambda^{-2} was found. Theoretical estimates indicate that most of the pressure effect on λ2\lambda^{-2} in MgB2_2 arises from the electron-phonon interaction.Comment: 5 pages, 2 figure

    Spatial fluctuations in an optical parametric oscillator below threshold with an intracavity photonic crystal

    Get PDF
    We show how to control spatial quantum correlations in a multimode degenerate optical parametric oscillator type I below threshold by introducing a spatially inhomogeneous medium, such as a photonic crystal, in the plane perpendicular to light propagation. We obtain the analytical expressions for all the correlations in terms of the relevant parameters of the problem and study the number of photons, entanglement, squeezing, and twin beams. Considering different regimes and configurations we show the possibility to tune the instability thresholds as well as the quantumness of correlations by breaking the translational invariance of the system through a photonic crystal modulation.Comment: 12 pages, 7 figure

    Infrared properties of Mg1x_{1-x}Alx(_x(B1y_{1-y}Cy_{y})2_2 single crystals in the normal and superconducting state

    Full text link
    The reflectivity R(ω)R (\omega) of abab-oriented Mg1x_{1-x}Alx_x(B1y_{1-y }Cy_y)2_2 single crystals has been measured by means of infrared microspectroscopy for 1300<ω<170001300<\omega<17000 cm1^{-1}. An increase with doping of the scattering rates in the π\pi and σ\sigma bands is observed, being more pronounced in the C doped crystals. The σ\sigma-band plasma frequency also changes with doping due to the electron doping, while the π\pi-band one is almost unchanged. Moreover, a σσ\sigma\to\sigma interband excitation, predicted by theory, is observed at ωIB0.47\omega_{IB} \simeq 0.47 eV in the undoped sample, and shifts to lower energies with doping. By performing theoretical calculation of the doping dependence ωIB\omega_{IB}, the experimental observations can be explained with the increase with electron doping of the Fermi energy of the holes in the σ\sigma-band. On the other hand, the σ\sigma band density of states seems not to change substantially. This points towards a TcT_c reduction driven mainly by disorder, at least for the doping level studied here. The superconducting state has been also probed by infrared synchrotron radiation for 30<ω<15030<\omega<150 cm1^{-1} in one pure and one C-doped sample. In the undoped sample (TcT_c = 38.5 K) a signature of the π\pi-gap only is observed. At yy = 0.08 (TcT_c = 31.9 K), the presence of the contribution of the σ\sigma-gap indicates dirty-limit superconductivity in both bands.Comment: 12 pages, 9 figure

    Multi-objective evolutionary–fuzzy augmented flight control for an F16 aircraft

    Get PDF
    In this article, the multi-objective design of a fuzzy logic augmented flight controller for a high performance fighter jet (the Lockheed-Martin F16) is described. A fuzzy logic controller is designed and its membership functions tuned by genetic algorithms in order to design a roll, pitch, and yaw flight controller with enhanced manoeuverability which still retains safety critical operation when combined with a standard inner-loop stabilizing controller. The controller is assessed in terms of pilot effort and thus reduction of pilot fatigue. The controller is incorporated into a six degree of freedom motion base real-time flight simulator, and flight tested by a qualified pilot instructor

    Graphene as an electronic membrane

    Full text link
    Experiments are finally revealing intricate facts about graphene which go beyond the ideal picture of relativistic Dirac fermions in pristine two dimensional (2D) space, two years after its first isolation. While observations of rippling added another dimension to the richness of the physics of graphene, scanning single electron transistor images displayed prevalent charge inhomogeneity. The importance of understanding these non-ideal aspects cannot be overstated both from the fundamental research interest since graphene is a unique arena for their interplay, and from the device applications interest since the quality control is a key to applications. We investigate the membrane aspect of graphene and its impact on the electronic properties. We show that curvature generates spatially varying electrochemical potential. Further we show that the charge inhomogeneity in turn stabilizes ripple formation.Comment: 6 pages, 11 figures. Updated version with new results about the re-hybridization of the electronic orbitals due to rippling of the graphene sheet. The re-hybridization adds the next-to-nearest neighbor hopping effect discussed in the previous version. New reference to recent STM experiments that give support to our theor

    Dynamical charge and spin density wave scattering in cuprate superconductor

    Full text link
    We show that a variety of spectral features in high-T_c cuprates can be understood from the coupling of charge carriers to some kind of dynamical order which we exemplify in terms of fluctuating charge and spin density waves. Two theoretical models are investigated which capture different aspects of such dynamical scattering. The first approach leaves the ground state in the disordered phase but couples the electrons to bosonic degrees of freedom, corresponding to the quasi singular scattering associated with the closeness to an ordered phase. The second, more phenomological approach starts from the construction of a frequency dependent order parameter which vanishes for small energies. Both theories capture scanning tunneling microscopy and angle-resoved photoemission experiments which suggest the protection of quasiparticles close to the Fermi energy but the manifestation of long-range order at higher frequencies.Comment: 27 pages, 13 figures, to appear in New J. Phy

    Cabibbo-suppressed non-leptonic B- and D-decays involving tensor mesons

    Get PDF
    The Cabibbo-suppressed non-leptonic decays of B (and D) mesons to final states involving tensor mesons are computed using the non-relativistic quark model of Isgur-Scora-Grinstein-Wise with the factorization hypothesis. We find that some of these B decay modes, as B --> (K^*, D^*)D^*_2, can have branching ratios as large as 6 x 10^{-5} which seems to be at the reach of future B factories.Comment: Latex, 11 pages, to appear in Phys. Rev.
    corecore