Experiments are finally revealing intricate facts about graphene which go
beyond the ideal picture of relativistic Dirac fermions in pristine two
dimensional (2D) space, two years after its first isolation. While observations
of rippling added another dimension to the richness of the physics of graphene,
scanning single electron transistor images displayed prevalent charge
inhomogeneity. The importance of understanding these non-ideal aspects cannot
be overstated both from the fundamental research interest since graphene is a
unique arena for their interplay, and from the device applications interest
since the quality control is a key to applications. We investigate the membrane
aspect of graphene and its impact on the electronic properties. We show that
curvature generates spatially varying electrochemical potential. Further we
show that the charge inhomogeneity in turn stabilizes ripple formation.Comment: 6 pages, 11 figures. Updated version with new results about the
re-hybridization of the electronic orbitals due to rippling of the graphene
sheet. The re-hybridization adds the next-to-nearest neighbor hopping effect
discussed in the previous version. New reference to recent STM experiments
that give support to our theor