34 research outputs found

    Effect of Holstein phonons on the optical conductivity of gapped graphene

    Full text link
    We study the optical conductivity of a doped graphene when a sublattice symmetry breaking is occurred in the presence of the electron-phonon interaction. Our study is based on the Kubo formula that is established upon the retarded self-energy. We report new features of both the real and imaginary parts of the quasiparticle self-energy in the presence of a gap opening. We find an analytical expression for the renormalized Fermi velocity of massive Dirac Fermions over broad ranges of electron densities, gap values and the electron-phonon coupling constants. Finally we conclude that the inclusion of the renormalized Fermi energy and the band gap effects are indeed crucial to get reasonable feature for the optical conductivity.Comment: 12 pages, 4 figures. To appear in Eur. Phys. J.

    Electronic Properties of Two-Dimensional Carbon

    Full text link
    We present a theoretical description of the electronic properties of graphene in the presence of disorder, electron-electron interactions, and particle-hole symmetry breaking. We show that while particle-hole asymmetry, long-range Coulomb interactions, and extended defects lead to the phenomenon of self-doping, local defects determine the transport and spectroscopic properties. Our results explain recent experiments in graphitic devices and predict new electronic behavior.Comment: 4 pages, 5 figures. The paper was originally submitted on May, 12th, 200

    Adatoms in Graphene

    Full text link
    We review the problem of adatoms in graphene under two complementary points of view, scattering theory and strong correlations. We show that in both cases impurity atoms on the graphene surface present effects that are absent in the physics of impurities in ordinary metals. We discuss how to observe these unusual effects with standard experimental probes such as scanning tunneling microscopes, and spin susceptibility.Comment: For the Proceedings of the "Graphene Week 2008" at the ICTP in Trieste, Italy. 8 pages, 8 figure

    Transport Properties through Double Barrier Structure in Graphene

    Full text link
    The mode-dependent transmission of relativistic ballistic massless Dirac fermion through a graphene based double barrier structure is being investigated for various barrier parameters. We compare our results with already published work and point out the relevance of these findings to a systematic study of the transport properties in double barrier structures. An interesting situation arises when we set the potential in the leads to zero, then our 2D problem reduces effectively to a 1D massive Dirac equation with an effective mass proportional to the quantized wave number along the transverse direction. Furthermore we have shown that the minimal conductivity and maximal Fano factor remain insensitive to the ratio between the two potentials V_2/V_1=\alpha.Comment: 18 pages, 12 figures, clarifications and reference added, misprints corrected. Version to appear in JLT

    Continuous-distribution puddle model for conduction in trilayer graphene

    Full text link
    An insulator-to-metal transition is observed in trilayer graphene based on the temperature dependence of the resistance under different applied gate voltages. At small gate voltages the resistance decreases with increasing temperature due to the increase in carrier concentration resulting from thermal excitation of electron-hole pairs. At large gate voltages excitation of electron-hole pairs is suppressed, and the resistance increases with increasing temperature because of the enhanced electron-phonon scattering. We find that the simple model with overlapping conduction and valence bands, each with quadratic dispersion relations, is unsatisfactory. Instead, we conclude that impurities in the substrate that create local puddles of higher electron or hole densities are responsible for the residual conductivity at low temperatures. The best fit is obtained using a continuous distribution of puddles. From the fit the average of the electron and hole effective masses can be determined.Comment: 18 pages, 5 figure

    Quantum field theory approach to the optical conductivity of strained and deformed graphene

    Get PDF
    The computation of the optical conductivity of strained and deformed graphene is discussed within the framework of quantum field theory in curved spaces. The analytical solutions of the Dirac equation in an arbitrary static background geometry for one dimensional periodic deformations are computed, together with the corresponding Dirac propagator. Analytical expressions are given for the optical conductivity of strained and deformed graphene associated with both intra and interbrand transitions. The special case of small deformations is discussed and the result compared to the prediction of the tight-binding model.The authors acknowledge financial supportfrom the Brazilian agencies FAPESP (Fundação de Amparo à Pesquisa do Estado de São Paulo) and CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico)

    Finite-Temperature Transport in Finite-Size Hubbard Rings in the Strong-Coupling Limit

    Full text link
    We study the current, the curvature of levels, and the finite temperature charge stiffness, D(T,L), in the strongly correlated limit, U>>t, for Hubbard rings of L sites, with U the on-site Coulomb repulsion and t the hopping integral. Our study is done for finite-size systems and any band filling. Up to order t we derive our results following two independent approaches, namely, using the solution provided by the Bethe ansatz and the solution provided by an algebraic method, where the electronic operators are represented in a slave-fermion picture. We find that, in the U=\infty case, the finite-temperature charge stiffness is finite for electronic densities, n, smaller than one. These results are essencially those of spinless fermions in a lattice of size L, apart from small corrections coming from a statistical flux, due to the spin degrees of freedom. Up to order t, the Mott-Hubbard gap is \Delta_{MH}=U-4t, and we find that D(T) is finite for n<1, but is zero at half-filling. This result comes from the effective flux felt by the holon excitations, which, due to the presence of doubly occupied sites, is renormalized to \Phi^{eff}=\phi(N_h-N_d)/(N_d+N_h), and which is zero at half-filling, with N_d and N_h being the number of doubly occupied and empty lattice sites, respectively. Further, for half-filling, the current transported by any eigenstate of the system is zero and, therefore, D(T) is also zero.Comment: 15 pages and 6 figures; accepted for PR

    Exciton swapping in a twisted graphene bilayer as a solid-state realization of a two-brane model

    Get PDF
    It is shown that exciton swapping between two graphene sheets may occur under specific conditions. A magnetically tunable optical filter is described to demonstrate this new effect. Mathematically, it is shown that two turbostratic graphene layers can be described as a "noncommutative" two-sheeted (2+1)-spacetime thanks to a formalism previously introduced for the study of braneworlds in high energy physics. The Hamiltonian of the model contains a coupling term connecting the two layers which is similar to the coupling existing between two braneworlds at a quantum level. In the present case, this term is related to a K-K' intervalley coupling. In addition, the experimental observation of this effect could be a way to assess the relevance of some theoretical concepts of the braneworld hypothesis.Comment: 15 pages, 3 figures, final version published in European Physical Journal

    Faraday rotation in graphene

    Full text link
    We study magneto--optical properties of monolayer graphene by means of quantum field theory methods in the framework of the Dirac model. We reveal a good agreement between the Dirac model and a recent experiment on giant Faraday rotation in cyclotron resonance. We also predict other regimes when the effects are well pronounced. The general dependence of the Faraday rotation and absorption on various parameters of samples is revealed both for suspended and epitaxial graphene.Comment: 10 pp; v2: typos corrected and references added, v3, v4: small changes and more reference
    corecore