26,598 research outputs found

    Gains from the upgrade of the cold neutron triple-axis spectrometer FLEXX at the BER-II reactor

    Full text link
    The upgrade of the cold neutron triple-axis spectrometer FLEXX is described. We discuss the characterisation of the gains from the new primary spectrometer, including a larger guide and double focussing monochromator, and present measurements of the energy and momentum resolution and of the neutron flux of the instrument. We found an order of magnitude gain in intensity (at the cost of coarser momentum resolution), and that the incoherent elastic energy widths are measurably narrower than before the upgrade. The much improved count rate should allow the use of smaller single crystals samples and thus enable the upgraded FLEXX spectrometer to continue making leading edge measurements.Comment: 8 pages, 7 figures, 5 table

    Influence of surface passivation on ultrafast carrier dynamics and terahertz radiation generation in GaAs

    Full text link
    The carrier dynamics of photoexcited electrons in the vicinity of the surface of (NH4)2S-passivated GaAs were studied via terahertz (THz) emission spectroscopy and optical-pump THz-probe spectroscopy. THz emission spectroscopy measurements, coupled with Monte Carlo simulations of THz emission, revealed that the surface electric field of GaAs reverses after passivation. The conductivity of photoexcited electrons was determined via optical-pump THz-probe spectroscopy, and was found to double after passivation. These experiments demonstrate that passivation significantly reduces the surface state density and surface recombination velocity of GaAs. Finally, we have demonstrated that passivation leads to an enhancement in the power radiated by photoconductive switch THz emitters, thereby showing the important influence of surface chemistry on the performance of ultrafast THz photonic devices.Comment: 4 pages, 3 figures, to appear in Applied Physics Letter

    Voltage-driven quantum oscillations in graphene

    Full text link
    We predict unusual (for non-relativistic quantum mechanics) electron states in graphene, which are localized within a finite-width potential barrier. The density of localized states in the sufficiently high and/or wide graphene barrier exhibits a number of singularities at certain values of the energy. Such singularities provide quantum oscillations of both the transport (e.g., conductivity) and thermodynamic properties of graphene - when increasing the barrier height and/or width, similarly to the well-known Shubnikov-de-Haas (SdH) oscillations of conductivity in pure metals. However, here the SdH-like oscillations are driven by an electric field instead of the usual magnetically-driven SdH-oscillations.Comment: 4 pages, 4 figure

    Optical signatures of quantum phase transitions in a light-matter system

    Get PDF
    Information about quantum phase transitions in conventional condensed matter systems, must be sought by probing the matter system itself. By contrast, we show that mixed matter-light systems offer a distinct advantage in that the photon field carries clear signatures of the associated quantum critical phenomena. Having derived an accurate, size-consistent Hamiltonian for the photonic field in the well-known Dicke model, we predict striking behavior of the optical squeezing and photon statistics near the phase transition. The corresponding dynamics resemble those of a degenerate parametric amplifier. Our findings boost the motivation for exploring exotic quantum phase transition phenomena in atom-cavity, nanostructure-cavity, and nanostructure-photonic-band-gap systems.Comment: 4 pages, 4 figure

    High emotional contagion and empathy are associated with enhanced detection of emotional authenticity in laughter

    Get PDF
    Nonverbal vocalisations such as laughter pervade social interactions, and the ability to accurately interpret them is an important skill. Previous research has probed the general mechanisms supporting vocal emotional processing, but the factors that determine individual differences in this ability remain poorly understood. Here, we ask whether the propensity to resonate with others’ emotions—as measured by trait levels of emotional contagion and empathy—relates to the ability to perceive different types of laughter. We focus on emotional authenticity detection in spontaneous and voluntary laughs: spontaneous laughs reflect a less controlled and genuinely felt emotion, and voluntary laughs reflect a more deliberate communicative act (e.g., polite agreement). In total, 119 participants evaluated the authenticity and contagiousness of spontaneous and voluntary laughs and completed two self-report measures of resonance with others’ emotions: the Emotional Contagion Scale and the Empathic Concern scale of the Interpersonal Reactivity Index. We found that higher scores on these measures predict enhanced ability to detect laughter authenticity. We further observed that perceived contagion responses during listening to laughter significantly relate to authenticity detection. These findings suggest that resonating with others’ emotions provides a mechanism for processing complex aspects of vocal emotional information.info:eu-repo/semantics/acceptedVersio

    Edge States of Monolayer and Bilayer Graphene Nanoribbons

    Full text link
    On the basis of tight-binding lattice model, the edge states of monolayer and bilayer graphene nanoribbons (GNRs) with different edge terminations are studied. The effects of edge-hopping modulation, spin-orbital coupling (SOC), and bias voltage on bilayer GNRs are discussed. We observe the following: (i) Some new extra edge states can be created by edge-hopping modulation for monolayer GNRs. (ii) Intralayer Rashba SOC plays a role in depressing the band energy gap EgE_g opened by intrinsic SOC for both monolayer and bilayer GNRs. An almost linear dependent relation, i.e., EgλRE_g\sim \lambda_R, is found. (iii) Although the bias voltage favors a bulk energy gap for bilayer graphene without intrinsic SOC, it tends to reduce the gap induced by intrinsic SOC. (iv) The topological phase of the quantum spin Hall effect can be destroyed completely by interlayer Rashba SOC for bilayer GNRs.Comment: 6 pages, 6 figure

    Applications of quantum integrable systems

    Get PDF
    We present two applications of quantum integrable systems. First, we predict that it is possible to generate high harmonics from solid state devices by demostrating that the emission spectrum for a minimally coupled laser field of frequency ω\omega to an impurity system of a quantum wire, contains multiples of the incoming frequency. Second, evaluating expressions for the conductance in the high temperature regime we show that the caracteristic filling fractions of the Jain sequence, which occur in the fractional quantum Hall effect, can be obtained from quantum wires which are described by minimal affine Toda field theories.Comment: 25 pages of LaTex, 4 figures, based on talk at the 6-th international workshop on conformal field theories and integrable models, (Chernogolovka, September 2002

    The Primary Spin-4 Casimir Operators in the Holographic SO(N) Coset Minimal Models

    Full text link
    Starting from SO(N) current algebra, we construct two lowest primary higher spin-4 Casimir operators which are quartic in spin-1 fields. For N is odd, one of them corresponds to the current in the WB_{\frac{N-1}{2}} minimal model. For N is even, the other corresponds to the current in the WD_{\frac{N}{2}} minimal model. These primary higher spin currents, the generators of wedge subalgebra, are obtained from the operator product expansion of fermionic (or bosonic) primary spin-N/2 field with itself in each minimal model respectively. We obtain, indirectly, the three-point functions with two real scalars, in the large N 't Hooft limit, for all values of the 't Hooft coupling which should be dual to the three-point functions in the higher spin AdS_3 gravity with matter.Comment: 65 pages; present the main results only and to appear in JHEP where one can see the Appendi

    Spinon confinement in a quasi one dimensional anisotropic Heisenberg magnet

    Get PDF
    Confinement is a process by which particles with fractional quantum numbers bind together to form quasiparticles with integer quantum numbers. The constituent particles are confined by an attractive interaction whose strength increases with increasing particle separation and as a consequence, individual particles are not found in isolation. This phenomenon is well known in particle physics where quarks are confined in baryons and mesons. An analogous phenomenon occurs in certain magnetic insulators; weakly coupled chains of spins S=1/2. The collective excitations in these systems is spinons (S=1/2). At low temperatures weak coupling between chains can induce an attractive interaction between pairs of spinons that increases with their separation and thus leads to confinement. In this paper, we employ inelastic neutron scattering to investigate the spinon confinement in the quasi-1D S=1/2 XXZ antiferromagnet SrCo2V2O8. Spinon excitations are observed above TN in quantitative agreement with established theory. Below TN the pairs of spinons are confined and two sequences of meson-like bound states with longitudinal and transverse polarizations are observed. Several theoretical approaches are used to explain the data. A new theoretical technique based on Tangent-space Matrix Product States gives a very complete description of the data and provides good agreement not only with the energies of the bound modes but also with their intensities. We also successfully explained the effect of temperature on the excitations including the experimentally observed thermally induced resonance between longitudinal modes below TN ,and the transitions between thermally excited spinon states above TN. In summary, our work establishes SrCo2V2O8 as a beautiful paradigm for spinon confinement in a quasi-1D quantum magnet and provides a comprehensive picture of this process.Comment: 17 pages, 18 figures, submitted to PR
    corecore