1,257 research outputs found

    A Relativistic Mean Field Model for Entrainment in General Relativistic Superfluid Neutron Stars

    Full text link
    General relativistic superfluid neutron stars have a significantly more intricate dynamics than their ordinary fluid counterparts. Superfluidity allows different superfluid (and superconducting) species of particles to have independent fluid flows, a consequence of which is that the fluid equations of motion contain as many fluid element velocities as superfluid species. Whenever the particles of one superfluid interact with those of another, the momentum of each superfluid will be a linear combination of both superfluid velocities. This leads to the so-called entrainment effect whereby the motion of one superfluid will induce a momentum in the other superfluid. We have constructed a fully relativistic model for entrainment between superfluid neutrons and superconducting protons using a relativistic σω\sigma - \omega mean field model for the nucleons and their interactions. In this context there are two notions of ``relativistic'': relativistic motion of the individual nucleons with respect to a local region of the star (i.e. a fluid element containing, say, an Avogadro's number of particles), and the motion of fluid elements with respect to the rest of the star. While it is the case that the fluid elements will typically maintain average speeds at a fraction of that of light, the supranuclear densities in the core of a neutron star can make the nucleons themselves have quite high average speeds within each fluid element. The formalism is applied to the problem of slowly-rotating superfluid neutron star configurations, a distinguishing characteristic being that the neutrons can rotate at a rate different from that of the protons.Comment: 16 pages, 5 figures, submitted to PR

    Equation of state of cosmic strings with fermionic current-carriers

    Get PDF
    The relevant characteristic features, including energy per unit length and tension, of a cosmic string carrying massless fermionic currents in the framework of the Witten model in the neutral limit are derived through quantization of the spinor fields along the string. The construction of a Fock space is performed by means of a separation between longitudinal modes and the so-called transverse zero energy solutions of the Dirac equation in the vortex. As a result, quantization leads to a set of naturally defined state parameters which are the number densities of particles and anti-particles trapped in the cosmic string. It is seen that the usual one-parameter formalism for describing the macroscopic dynamics of current-carrying vortices is not sufficient in the case of fermionic carriers.Comment: 30 pages, 15 figures, uses ReVTeX, equation of state corrected, comments and references added. Accepted for publication in Phys. Rev.

    Fermionic massive modes along cosmic strings

    Get PDF
    The influence on cosmic string dynamics of fermionic massive bound states propagating in the vortex, and getting their mass only from coupling to the string forming Higgs field, is studied. Such massive fermionic currents are numerically found to exist for a wide range of model parameters and seen to modify drastically the usual string dynamics coming from the zero mode currents alone. In particular, by means of a quantization procedure, a new equation of state describing cosmic strings with any kind of fermionic current, massive or massless, is derived and found to involve, at least, one state parameter per trapped fermion species. This equation of state exhibits transitions from subsonic to supersonic regimes while the massive modes are filled.Comment: 27 pages, 15 figures, uses ReVTeX. Shortened version, accepted for publication in Phys. Rev.

    Non-vanishing Magnetic Flux through the Slightly-charged Kerr Black Hole

    Full text link
    In association with the Blanford-Znajek mechanism for rotational energy extraction from Kerr black holes, it is of some interest to explore how much of magnetic flux can actually penetrate the horizon at least in idealized situations. For completely uncharged Kerr hole case, it has been known for some time that the magnetic flux gets entirely expelled when the hole is maximally-rotating. In the mean time, it is known that when the rotating hole is immersed in an originally uniform magnetic field surrounded by an ionized interstellar medium (plasma), which is a more realistic situation, the hole accretes certain amount of electric charge. In the present work, it is demonstrated that as a result of this accretion charge small enough not to disturb the geometry, the magnetic flux through this slightly charged Kerr hole depends not only on the hole's angular momentum but on the hole's charge as well such that it never vanishes for any value of the hole's angular momentum.Comment: 33pages, 1 figure, Revtex, some comments added, typos correcte

    Tracking Black Holes in Numerical Relativity

    Full text link
    This work addresses and solves the problem of generically tracking black hole event horizons in computational simulation of black hole interactions. Solutions of the hyperbolic eikonal equation, solved on a curved spacetime manifold containing black hole sources, are employed in development of a robust tracking method capable of continuously monitoring arbitrary changes of topology in the event horizon, as well as arbitrary numbers of gravitational sources. The method makes use of continuous families of level set viscosity solutions of the eikonal equation with identification of the black hole event horizon obtained by the signature feature of discontinuity formation in the eikonal's solution. The method is employed in the analysis of the event horizon for the asymmetric merger in a binary black hole system. In this first such three dimensional analysis, we establish both qualitative and quantitative physics for the asymmetric collision; including: 1. Bounds on the topology of the throat connecting the holes following merger, 2. Time of merger, and 3. Continuous accounting for the surface of section areas of the black hole sources.Comment: 14 pages, 16 figure

    Relativistic theory of elastic deformable astronomical bodies: perturbation equations in rotating spherical coordinates and junction conditions

    Full text link
    In this paper, the dynamical equations and junction conditions at the interface between adjacent layers of different elastic properties for an elastic deformable astronomical body in the first post-Newtonian approximation of Einstein theory of gravity are discussed in both rotating Cartesian coordinates and rotating spherical coordinates. The unperturbed rotating body (the ground state) is described as uniformly rotating, stationary and axisymmetric configuration in an asymptotically flat space-time manifold. Deviations from the equilibrium configuration are described by means of a displacement field. In terms of the formalism of relativistic celestial mechanics developed by Damour, Soffel and Xu, and the framework established by Carter and Quintana the post Newtonian equations of the displacement field and the symmetric trace-free shear tensor are obtained. Corresponding post-Newtonian junction conditions at interfaces also the outer surface boundary conditions are presented. The PN junction condition is an extension of Wahr's one which is a Newtonian junction conditions without rotating.Comment: Revtex4, 14 page

    Development of Clostridium difficile R20291ΔPaLoc model strains and in vitro methodologies reveals CdtR is required for the production of CDT to cytotoxic levels

    Get PDF
    Assessing the regulation of Clostridium difficile transferase (CDT), is complicated by the presence of a Pathogenicity locus (PaLoc) which encodes Toxins A and B. Here we developed R20291ΔPaLoc model strains and cell-based assays to quantify CDT-mediated virulence. Their application demonstrated that the transcriptional regulator, CdtR, was required for CDT-mediated cytotoxicity

    BCS theory for s+g-wave superconductivity borocarbides Y(Lu)Ni2_2B2_2C

    Full text link
    The s+g mixed gap function \Delta_k=\Delta {[(1-x)-x\sin^4\theta\cos4\phi]} (x: weight of g-wave component) has been studied within BCS theory. By suitable consideration of the pairing interaction, we have confirmed that the coexistence of s- and g-wave, as well as the state with equal s and g amplitudes (i.e., x=1/2) may be stable. This provides the semi-phenomenological theory for the s+g-wave superconductivity with point nodes which has been observed experimentally in borocarbides YNi_2B_2C and possibly in LuNi_2B_2C.Comment: 5 pages, 3 figure

    Quantum Vacuum Instability Near Rotating Stars

    Get PDF
    We discuss the Starobinskii-Unruh process for the Kerr black hole. We show how this effect is related to the theory of squeezed states. We then consider a simple model for a highly relativistic rotating star and show that the Starobinskii-Unruh effect is absent.Comment: 17 Pages, (accepted by PRD), (previously incorrect header files have been corrected

    Computing SL(2,C) Central Functions with Spin Networks

    Full text link
    Let G=SL(2,C) and F_r be a rank r free group. Given an admissible weight in N^{3r-3}, there exists a class function defined on Hom(F_r,G) called a central function. We show that these functions admit a combinatorial description in terms of graphs called trace diagrams. We then describe two algorithms (implemented in Mathematica) to compute these functions.Comment: to appear in Geometriae Dedicat
    corecore