2,182 research outputs found

    Kinetic description of avalanching systems

    Full text link
    Avalanching systems are treated analytically using the renormalization group (in the self-organized-criticality regime) or mean-field approximation, respectively. The latter describes the state in terms of the mean number of active and passive sites, without addressing the inhomogeneity in their distribution. This paper goes one step further by proposing a kinetic description of avalanching systems making use of the distribution function for clusters of active sites. We illustrate application of the kinetic formalism to a model proposed for the description of the avalanching processes in the reconnecting current sheet of the Earth magnetosphere.Comment: 9 page

    Distributed Generation and Resilience in Power Grids

    Full text link
    We study the effects of the allocation of distributed generation on the resilience of power grids. We find that an unconstrained allocation and growth of the distributed generation can drive a power grid beyond its design parameters. In order to overcome such a problem, we propose a topological algorithm derived from the field of Complex Networks to allocate distributed generation sources in an existing power grid.Comment: proceedings of Critis 2012 http://critis12.hig.no

    An Intervention-AUV learns how to perform an underwater valve turning

    No full text
    Intervention autonomous underwater vehicles (I-AUVs) are a promising platform to perform intervention task in underwater environments, replacing current methods like remotely operate underwater vehicles (ROVs) and manned sub-mersibles that are more expensive. This article proposes a complete system including all the necessary elements to perform a valve turning task using an I-AUV. The knowledge of an operator to perform the task is transmitted to an I-AUV by a learning by demonstration (LbD) algorithm. The algorithm learns the trajectory of the vehicle and the end-effector to accomplish the valve turning. The method has shown its feasibility in a controlled environment repeating the learned task with different valves and configurations

    Crossover component in non critical dissipative sandpile models

    Full text link
    The effect of bulk dissipation on non critical sandpile models is studied using both multifractal and finite size scaling analyses. We show numerically that the local limited (LL) model exhibits a crossover from multifractal to self-similar behavior as the control parameters hexth_{ext} and ϵ\epsilon turn towards their critical values, i.e. hext0+h_{ext} \to 0^+ and ϵϵc\epsilon \to \epsilon_c. The critical exponents are not universal and exhibit a continuous variation with ϵ\epsilon. On the other hand, the finite size effects for the local unlimited (LU), non local limited (NLL), and non local unlimited (NLU) models are well described by the multifractal analysis for all values of dissipation rate ϵ\epsilon. The space-time avalanche structure is studied in order to give a deeper understanding of the finite size effects and the origin of the crossover behavior. This result is confirmed by the calculation of the susceptibility.Comment: 13 pages, 10 figures, Published in European Physical Journal

    Towards Autonomous Robotic Valve Turning

    No full text
    In this paper an autonomous intervention robotic task to learn the skill of grasping and turning a valve is described. To resolve this challenge a set of different techniques are proposed, each one realizing a specific task and sending information to the others in a Hardware-In-Loop (HIL) simulation. To improve the estimation of the valve position, an Extended Kalman Filter is designed. Also to learn the trajectory to follow with the robotic arm, Imitation Learning approach is used. In addition, to perform safely the task a fuzzy system is developed which generates appropriate decisions. Although the achievement of this task will be used in an Autonomous Underwater Vehicle, for the first step this idea has been tested in a laboratory environment with an available robot and a sensor

    Continuous Time Random Walks in periodic systems: fluid limit and fractional differential equations on the circle

    Get PDF
    In this article, the continuous time random walk on the circle is studied. We derive the corresponding generalized master equation and discuss the effects of topology, especially important when Levy flights are allowed. Then, we work out the fluid limit equation, formulated in terms of the periodic version of the fractional Riemann-Liouville operators, for which we provide explicit expressions. Finally, we compute the propagator in some simple cases. The analysis presented herein should be relevant when investigating anomalous transport phenomena in systems with periodic dimensions.Comment: 14 pages, 1 figure. References added. Published versio

    A sandpile model with tokamak-like enhanced confinement phenomenology

    Get PDF
    Confinement phenomenology characteristic of magnetically confined plasmas emerges naturally from a simple sandpile algorithm when the parameter controlling redistribution scalelength is varied. Close analogues are found for enhanced confinement, edge pedestals, and edge localised modes (ELMs), and for the qualitative correlations between them. These results suggest that tokamak observations of avalanching transport are deeply linked to the existence of enhanced confinement and ELMs.Comment: Manuscript is revtex (latex) 1 file, 7 postscript figures Revised version is final version accepted for publication in PRL Revisions are mino
    corecore