13 research outputs found

    Leaf economics traits predict litter decomposition of tropical plants and differ among land use types

    No full text
    1. Decomposition is a key ecosystem process that determines nutrient and carbon cycling. Individual leaf and litter characteristics are good predictors of decomposition rates within biomes worldwide, but knowledge of which traits are the best predictors for tropical species remains scarce. Also, the effect of a species’ position on the leaf economics spectrum (LES) and regeneration light requirements on decomposition rate are, until now, unknown. In addition, land use change is the most immediate and widespread global change driver, with potentially significant consequences for decomposition. 2. Here we evaluate 14 leaf and litter traits, and litter decomposition rates of 23 plant species from three different land use types (mature forest, secondary forest and agricultural field) in the moist tropics of lowland Bolivia. 3. Leaf and litter traits were closely associated and showed, in line with the LES, a slow–fast continuum ranging from species with tough, well-protected leaves (high leaf density, leaf dry matter content, force to punch and litter C : N ratio) to species with cheap, productive leaves [high specific leaf area (SLA) and nutrient concentrations in leaves and litter]. 4. Fresh green leaf traits were better predictors of decomposition rate than litter traits, and leaf nitrogen concentration (LNC) was a better predictor of decomposition than leaf phosphorus concentration, despite the widely held belief that tropical forests are P-limited. 5. Multiple regression analysis showed that LNC, SLA and chlorophyll content per unit leaf area had positive effects on decomposition, explaining together 65–69% of the variation. Species position on the LES and regeneration light requirements were also positively related to decomposition. 6. Plant communities from agricultural fields had significantly higher LNC and SLA than communities from mature forest and secondary forest. Species from agricultural fields had higher average decomposition rates than species from other ecosystems and tended to be at the fast end of the LES. 7. Both individual traits of living leaves and species’ position on the LES persist in litter, so that leaves lead influential afterlifes, affecting decomposition, nutrient and carbon cyclin

    Leaf economics traits predict litter decomposition of tropical plants and differ among land use types

    No full text
    1. Decomposition is a key ecosystem process that determines nutrient and carbon cycling. Individual leaf and litter characteristics are good predictors of decomposition rates within biomes worldwide, but knowledge of which traits are the best predictors for tropical species remains scarce. Also, the effect of a species’ position on the leaf economics spectrum (LES) and regeneration light requirements on decomposition rate are, until now, unknown. In addition, land use change is the most immediate and widespread global change driver, with potentially significant consequences for decomposition. 2. Here we evaluate 14 leaf and litter traits, and litter decomposition rates of 23 plant species from three different land use types (mature forest, secondary forest and agricultural field) in the moist tropics of lowland Bolivia. 3. Leaf and litter traits were closely associated and showed, in line with the LES, a slow–fast continuum ranging from species with tough, well-protected leaves (high leaf density, leaf dry matter content, force to punch and litter C : N ratio) to species with cheap, productive leaves [high specific leaf area (SLA) and nutrient concentrations in leaves and litter]. 4. Fresh green leaf traits were better predictors of decomposition rate than litter traits, and leaf nitrogen concentration (LNC) was a better predictor of decomposition than leaf phosphorus concentration, despite the widely held belief that tropical forests are P-limited. 5. Multiple regression analysis showed that LNC, SLA and chlorophyll content per unit leaf area had positive effects on decomposition, explaining together 65–69% of the variation. Species position on the LES and regeneration light requirements were also positively related to decomposition. 6. Plant communities from agricultural fields had significantly higher LNC and SLA than communities from mature forest and secondary forest. Species from agricultural fields had higher average decomposition rates than species from other ecosystems and tended to be at the fast end of the LES. 7. Both individual traits of living leaves and species’ position on the LES persist in litter, so that leaves lead influential afterlifes, affecting decomposition, nutrient and carbon cyclin

    Effects of disturbance intensity on species and functional diversity in a tropical forest

    No full text
    Disturbances are widespread and may affect community assembly, species composition, (functional) diversity and hence ecosystem processes. It remains still unclear to what extent disturbance-mediated species changes scale-up to changes in community functional properties, especially for species-rich tropical forests. A large-scale field experiment was performed in which the dynamics of 15 000 stems >10 cm in diameter was monitored for 8 years in 44 one-ha forest plots. Twelve functional effect and response traits were measured for the most dominant tree species. The effects of different intensities of disturbance caused by logging and silvicultural treatments on the species and functional diversity of a Bolivian tropical forest community were evaluated, along with how these changes were driven by underlying demographic processes. Disturbance treatments did not affect species diversity or functional diversity indices based on multiple traits related to primary productivity and decomposition rate. This result suggests that species richness is conserved, and trait variation is maintained, which can buffer the community against environmental change. In contrast, disturbance intensity affected the average plant trait values in the community (the community-weighted mean) for seven of 12 traits evaluated. At high disturbance intensity, the community had a lower wood density of stem and branches, lower leaf toughness and dry matter content, but higher specific leaf area and leaf N- and P concentration, with the value of these traits changing on average 6% over the 8-year period. The functional spectrum of the community changed, therefore, from slow, conservative, shade-tolerant species towards fast, acquisitive, light-demanding species. These functional changes in mean trait values may enhance primary productivity and decomposition rate in the short term. Temporal changes in community functional properties were mainly driven by recruitment, and little by mortality or survival. Synthesis. Moderate levels of (logging) disturbance neither affected species diversity nor functional diversity per se in the 8-year period after logging. Disturbance did, however, change the functional community composition towards fast species with more acquisitive traits, thus potentially fuelling primary productivity and nutrient and carbon cycling. In conclusion, tropical forest management may contribute to conserving functional biodiversity of trees while providing forest resources

    Does functional trait diversity predict aboveground biomass and productivity of tropical forests? Testing three alternative hypotheses

    Get PDF
    Tropical forests are globally important, but it is not clear whether biodiversity enhances carbon storage and sequestration in them. We tested this relationship focusing on components of functional trait biodiversity as predictors. Data are presented for three rain forests in Bolivia, Brazil and Costa Rica. Initial above-ground biomass and biomass increments of survivors, recruits and survivors + recruits (total) were estimated for trees =10 cm d.b.h. in 62 and 21 1.0-ha plots, respectively. We determined relationships of biomass increments to initial standing biomass (AGBi), biomass-weighted community mean values (CWM) of eight functional traits and four functional trait variety indices (functional richness, functional evenness, functional diversity and functional dispersion). The forest continuum sampled ranged from ‘slow’ stands dominated by trees with tough tissues and high AGBi, to ‘fast’ stands dominated by trees with soft, nutrient-rich leaves, lighter woods and lower AGBi. We tested whether AGBi and biomass increments were related to the CWM trait values of the dominant species in the system (the biomass ratio hypothesis), to the variety of functional trait values (the niche complementarity hypothesis), or in the case of biomass increments, simply to initial standing biomass (the green soup hypothesis). CWMs were reasonable bivariate predictors of AGBi and biomass increments, with CWM specific leaf area SLA, CWM leaf nitrogen content, CWM force to tear the leaf, CWM maximum adult height Hmax and CWM wood specific gravity the most important. AGBi was also a reasonable predictor of the three measures of biomass increment. In best-fit multiple regression models, CWMHmax was the most important predictor of initial standing biomass AGBi. Only leaf traits were selected in the best models for biomass increment; CWM SLA was the most important predictor, with the expected positive relationship. There were no relationships of functional variety indices to biomass increments, and AGBi was the only predictor for biomass increments from recruits. Synthesis. We found no support for the niche complementarity hypothesis and support for the green soup hypothesis only for biomass increments of recruits. We have strong support for the biomass ratio hypothesis. CWMHmax is a strong driver of ecosystem biomass and carbon storage and CWM SLA, and other CWM leaf traits are especially important for biomass increments and carbon sequestration
    corecore