15 research outputs found

    Delay in feed access and spread of hatch: Importance of early nutrition

    Full text link
    In a commercial hatchery, chicks (or poults) hatch over a 24-48 hour period. All chicks remain in the incubator until the majority of the chicks have emerged from the shell. Once removed from the incubator, the newly hatched chick has to undergo several hatchery treatments and is then transported before being placed on the broiler farm. This means that, under practical conditions, chicks are deprived of feed and water for up to 72 hours. In addition, the time of hatch within the hatching window and the spread of hatch cause variability in the amount of time that chicks are feed deprived. Literature on feed deprivation after hatch clearly demonstrates the detrimental effects of any delay in feed access on performance of the chicks with respect to growth, immune system activation, digestive enzyme stimulation and organ development. Improved management strategies, such as shortening the hatching window or the time to first feeding by specific management measures, provide an alternative in dealing with the negative effects caused by a delay in feed access. The development of pre-starter diets that better meet the needs of the newly hatched chicks or in ovo feeding to bridge the gap between hatch and first feeding provide other alternatives in overcoming these problems. However, speculation remains regarding the importance of in ovo or early feeding, or whether the in ovo or early feeding itself is responsible for the beneficial effects reported. The aim of the following review is to discuss the current status of research into early feeding and to stimulate future and further research regarding these topics. © World's Poultry Science Association 2010

    Acclimation of broiler chickens to chronic high environmental temperature

    No full text
    The present study was conducted to evaluate the zootechnical parameters and age related changes in physiological responses of broiler chickens exposed to hot environment from early age onwards. The broiler chickens were exposed to high temperature (30 degreesC) at 15 d of age and maintained to Day 38 or maintained under thermoneutral environment (control).No significant decrease in feed consumption (FC) and body weight (BW) gain was observed in high temperature group after 7 d of exposure, but in the subsequent period, heat exposure lowered BW and FC, compared to control group. However, the weight gain was not significantly changed after 24 d of exposure, and the feed efficiency was not affected throughout the experimental period.The venous pCO(2) pressure was only significantly decreased by temperature after 24 d of heat exposure. The glucose, non-esterified fatty acid (NEFA), triglyceride (TG), glucose, lipid peroxidation (LPO), creatine kinase (CK), and corticosterone were not influenced by the temperature treatment. The significant decrease in uric acid and increase in lactate concentration due to high temperature were observed respectively at 28 and 35 d of age. The concentrations of triiodothyronine (T-3) and thyroxine (T-4) were changed oppositely at 28 d of age, as T-3 was decreased and T-4 was elevated by high temperature. However, the concentration of T-4 in plasma was decreased whereas T-3 was not changed at 38 d of age. The relationships between the blood parameters were changed due to the temperature treatment, suggesting that not only absolute values but also their interrelationships have to be considered when studying the effects of a particular treatment on physiological functioning.These results suggest the growth and physiological responses of broiler chickens, exposed to high temperature from early age onwards, differed at different stages of acclimation. The process of heat acclimation is related to the mode of heat exposure imposed and is not only reflected in the changes in the absolute concentrations, but also in the correlations among the blood indices

    Regulation of growth hormone expression by thyrotropin-releasing hormone through the pituitary-specific transcription factor Pit-1 in chicken pituitary

    No full text
    Pit-1 is a pituitary-specific POU-domain DNA binding factor, which binds to and trans-activates promoters of growth hormone- (GH), prolactin- (PRL) and thyroid stimulating hormone beta- (TSHβ) encoding genes. Pit-1 has been identified in several mammalian and avian species. Thyrotropin-releasing hormone (TRH) is located in the hypothalamus and it stimulates TSH, GH and PRL release from the pituitary gland. In the present study, we successfully developed a competitive RT-PCR for the detection of Pit-1 expression in the chicken pituitary, that was sensitive enough to detect picogram levels of Pit-1 mRNA. Applying this method, the effect of TRH injections on Pit-1 mRNA expression was determined in the pituitary of chick embryos and growing chicks. In both 18-day-old embryos and 10-day-old male chicks the Pit-1 mRNA expression was significantly increased following TRH injection, thereby indicating that the stimulatory effects of TRH on several pituitary hormones is mediated via its effect on Pit-1 expression. Therefore, a semi-quantitative RT-PCR method was used to detect possible changes in GH levels. TRH affected the GH mRNA levels at both developmental stages. These results, combined with the data on Pit-1 mRNA expression, indicate that Pit-1 has a role in mediating the stimulatory effects of TRH on pituitary hormones like GH

    Performance and physiological parameters of broiler chickens subjected to fasting on the neonatal period

    No full text
    Broiler chicks aged 12 h after hatching were allotted according to a block design in a 7 x 2 factorial schedule of 14 treatments and four replications of 50 chicks each one. The main experimental factors were fasting for 0, 6, 12, 18, 24, 30, and 36 h after chick placement and sex. Independent of sex, fasting had a negative linear effect on weight and productivity of broilers at market age (42 d) without affecting feed conversion or mortality index. Groups subjected to 18 and 36 h of fasting after placement, corresponding to 30 and 48 h posthatching fasting, had lower biometrical values for small intestine (length, weight, and size; villus height; and crypt depth) than chicks fed immediately after placement. According to the Pearson test, BW of birds at 21 and 42 d were significantly correlated to BW at 7 d (r = 0.77) and 21 d (r = 0.45), respectively. Males performed better than females but had higher mortality rates. Fasting did not influence serum concentrations of corticosterone or sexual steroid hormones. Nevertheless, early signs of sexual dimorphism arose from the high estradiol (E2) concentration on female serum. Heterophil:lymphocyte ratio was not different among treatments, indicating that early fasting did not seem to be a stress factor 21 or 42 d after fasting. The results suggested a maximum fasting of 24 h after hatching in order to preserve broiler productivity at market age

    Effects of storage time on incubating egg gas pressure, thyroid hormones, and corticosterone levels in embryos and on their hatching parameters

    No full text
    Incubating eggs (1,800 total) produced by a commercial flock of Cobb broiler breeders were used to determine the effects of storage duration (3 and 18 d) on gas partial pressure, thyroid hormones, and hatching parameters. Partial pressure of oxygen (pO2) and carbon dioxide (pCO2) were measured on d 18 and at internal pipping (IP) during incubation. Blood samples were collected for determination of triiodothyronine (T3), thyroxine (T4), and corticosterone concentrations in the embryos at IP and in newly hatched chicks. From 464 to 510 h of incubation, eggs were checked individually every 2 h to determine the timing and duration of IP, external pipping (EP), and total hatching time. At 18 d of incubation and at IP, pCO2 was greater in air cell of eggs stored for 3 d compared to those stored for 18 d (P < 0.05), but pO2 was greater in eggs stored for 18 d. At IP, T3 and corticosterone levels were higher in plasma of the embryos of eggs stored for 3 d compared to those stored for 18 d, but it was the reverse in newly hatched chicks (P < 0.05). Embryos from eggs stored for 18 d required more time to complete IP compared to embryos of eggs stored for only 3 d (P < 0.05), whereas the duration of EP was not affected by storage. The overall longer incubation was, however, not only due to prolonged IP but also to later occurrence of IP. It was concluded that prolonged IP as a result of long storage may be related to the late increase in corticosterone level, which may be a necessary stimulus for higher T 3/T4 ratio, late increase in pCO2 level, and decrease in pO2. The effect of long storage was a delay in hatching and a continuous increase in T3 due to higher corticosterone levels between IP and hatching, which may be an indication of the more stressful event of hatching of embryos from eggs stored longer. Differences in pCO2, pO2, T3, T4, and corticosterone levels in the incubating eggs may be manifestations of these changes culminating in altered hatching parameters and consequently differences in chick quality and growth potentials

    Physiological status of broiler chicks at pulling time and the relationship to duration of holding period

    Get PDF
    Newly hatched chicks may be held longer than 48 h and experience long periods of fasting in commercial hatcheries. Limited information is known about the physiological status of chicks in such situations, due to the difficulty of precisely recording time of hatch. This study investigated the effect of the time from hatch to pulling (holding period) on physiological measures/parameters in 109 broiler chicks. Fertile Ross 308 eggs were incubated in a custom built small-scale incubator. The individual hatching time of each focal chick was determined using eggshell temperature monitoring. At 'pulling' (512 h of incubation time), the quality of focal chicks was assessed using the chick scoring method and physiological parameters were measured including BW, organ (heart, liver and stomach) weights, blood values and plasma corticosterone level. The time from hatch to pulling varied from 7.58 to 44.97 h. Egg weight at setting was significantly correlated with chick BW and weight of organs at pulling, but had no effect on chick quality, blood values and plasma corticosterone. Relative BW at pulling was negatively associated with the duration of holding period (P=0.002). However, there was a positive correlation between relative stomach weight and the duration of the holding period (P<0.001). As the holding period duration increased, there was a trend that blood partial pressure of oxygen, haematocrit and haemoglobin also increased, and blood partial pressure of carbon dioxide, total carbon dioxide and bicarbonate decreased (P<0.05). A wide range of plasma corticosterone was observed from chicks that had experienced different durations of holding period. We conclude that shortening the hatch window and minimising the number of chicks that experience a long holding period before pulling may improve chick quality and physiological status, which may be due to unfavourable environmental conditions that include feed and water deprivation.status: publishe
    corecore