174 research outputs found

    Yihua Eva Cao, Piano

    Get PDF
    Sonata in F major, K533/494 / W.A. Mozart; Water Dance / Karen Tanaka; Fantasiestücke, Op.12 / Robert Schuman

    Theoretical Analysis and Implementation of Photovoltaic Fault Diagnosis

    Get PDF
    The utilization of solar energy by photovoltaics (PVs) is seen in increase across the world since the technologies are getting mature and the material costs are being driven down. However, their operating costs are still very high, owing to their vulnerability to harsh outdoor environments they are working. Currently, the reliability of PV systems is the bottle-neck issue and is becoming a heated research topic. This chapter presents the state-of-the-art technologies for photovoltaic fault diagnosis, based on an intensive literature review and theoretical analysis. The chapter evaluates the fault mechanisms of photovoltaics at the cell, module, string and array levels. Analytical models are developed to understand the PV’s terminal characteristics for diagnostic purposes. Offline and online fault diagnosis technologies are reviewed and compared based on the use of electrical sensors and thermal cameras. The aim of this chapter is to illustrate the PV faulty characteristics, to develop offline and online fault diagnosis, and to use the fault diagnosis information to achieve optimal operation (maximum power point tracking) under various PV faulty conditions, by using multi-disciplinary analytical, empirical and experimental methods

    Numerical Simulation of Rotor Flow Field Based on Overset Grids and Several Spatial and Temporal Discretization Schemes

    Get PDF
    AbstractA numerical method based on solutions of Euler/Navier-Stokes (N-S) equations is developed for calculating the flow field over a rotor in hover. Jameson central scheme, van Leer flux-vector splitting scheme, advection upwind splitting method (AUSM) scheme, upwind AUSM/van Leer scheme, AUSM+ scheme and AUSMDV scheme are implemented for spatial discretization, and van Albada limiter is also applied. For temporal discretization, both explicit Runge-Kutta method and implicit lower-upper symmetric Gauss-Seidel (LU-SGS) method are attempted. Simultaneously, overset grid technique is adopted. In detail, hole-map method is utilized to identify intergrid boundary points (IGBPs). Furthermore, aimed at identification issue of donor elements, inverse-map method is implemented. Eventually, blade surface pressure distributions derived from numerical simulation are validated compared with experimental data, showing that all the schemes mentioned above have the capability to predict the rotor flow field accurately. At the same time, vorticity contours are illustrated for analysis, and other characteristics are also analyzed

    Numerical Simulation of Gear Heat Distribution in Meshing Process Based on Thermal-structural Coupling

    Get PDF
    The thermal balance state of high-speed and heavy-load gear transmission system has an important influence on the performance and failure of gear transmission and the design of gear lubrication system. Excessive surface temperature of gear teeth is the main cause of gluing failure of gear contact surface. To investigate the gear heat distribution in meshing process and discuss the effect of thermal conduction on heat distribution,a finite element model of spur gear is presented in the paper which can represent general involute spur gears. And a simulation approach is use to calculate gear heat distribution in meshing process. By comparing with theoretical calculation, the correctness of the simulation method is verified, and the heat distribution of spur gear under the condition of heat conduction is further analyzed. The difference between the calculation results with heat conduction and without heat conduction is compared. The research has certain reference significance for dry gear hobbing and the same type of thermal-structural coupling analysis

    Effect of Turbulence Models on Simulated Iced Aircraft Airfoil

    Get PDF
    The present work describes a computational study of aerodynamic characteristics of GLC305 airfoil clean and with 16.7 min ice shape (rime 212) and 22.5 min ice shape (glaze 944).The performance of turbulence models SA, Kε, Kω Std, and Kω SST model are observed against experimental flow fields at different Mach numbers 0.12, 0.21, 0.28 in a range of Reynolds numbers 3x106, 6x106, and 10.5x106 on clean and iced aircraft airfoil GLC305. Numerical predictions include lift, drag and pitching moment coefficients at different Mach numbers and at different angle of attacks were done. Accuracy of solutions with respect to the effects of turbulence models, variation of Mach number, initial conditions, grid resolution and grid spacing near the wall made the study much sensitive. Navier Stokes equation based computational technique is used. Results are very close to the experimental results. It has seen that SA and SST models are more efficient than Kε and Kω standard in under study problem

    Community prevalence of carbapenemase-producing Gram-negative bacteria

    Get PDF
    Purpose: To raise awareness of carbapenemase-producing organisms, identify “at-risk” patients when admitted in a medical healthcare facility, and to outline effective infection prevention and control measures in order to halt the entry and spread of these organisms. Methods: A total of 1043 un-duplicated urine specimens of healthy volunteers who had no travel history or history of hospitalization were screened. The carbapenemase genotype of each imipenem-resistant strain was determined. Molecular typing and homology analysis of the main carbapenemase-producing strains were used to reveal the mode of transmission of resistance genes. Through transfer joint experiments, the potential risk of spread of carbapenemase genes was assessed. Results: A total of 19 carbapenemase-producing strains from 1,043 non-duplicated healthy volunteers (1.82 %) were identified. The main carbapenemase-producing organism was E. coli (42.1 %, 8/19). The main carbapenemase genotype of E. coli was blaKPC-2 (7 strains). Results from multi-locus sequence typing (MLST) indicated that 7 E. coli isolates belonged to ST-10, ST-101, ST-131, ST-405, ST-410 and ST-1193 and ST-2562. Homologous cluster analysis revealed that the sequence types among the 7 E. coli were high in diversity. The blaKPC-2 gene was successfully transferred from these isolates to 10.22-14 via conjugation. All recipient cells showed marked decreases in carbapenem sensitivity to imipenem (p < 0.05)). The degrees of conjugation were 2.10±0.12 ×10-4, 1.96±0.14×10-4, 2.72±0.18 ×10-4, 3.15±0.20 × 10-4, 2.92±0.23 ×10-4, 3.50±0.20 ×10-4 and 4.12±0.24 ×10-4 in recipient cells of TC7.23-51, TC8.9-42, TC8.15-11, TC8.23-59-3, TC8.23-83, TC9.08-47 and TC10.13-15, respectively. Conclusion: The findings demonstrate the pattern and features of carbapenemase-insensitive E. coli. The blaKPC-2 was the main community-prevalent gene of carbapenem-resistant E. coli. In view of increasing incidence of resistance to multi-drug therapy, surveillance of insensitivity to antibiotics is vital, especially urinary system infection due to carbapenem-insensitive E. coli

    New SR drive with integrated charging capacity for plug-in hybrid electric vehicles (PHEVs)

    Get PDF
    Plug-in hybrid electric vehicles (PHEVs) provide much promise in reducing greenhouse gas emissions and, thus, are a focal point of research and development. Existing on-board charging capacity is effective but requires the use of several power conversion devices and power converters, which reduce reliability and cost efficiency. This paper presents a novel three-phase switched reluctance (SR) motor drive with integrated charging functions (including internal combustion engine and grid charging). The electrical energy flow within the drivetrain is controlled by a power electronic converter with less power switching devices and magnetic devices. It allows the desired energy conversion between the engine generator, the battery, and the SR motor under different operation modes. Battery-charging techniques are developed to operate under both motor-driving mode and standstill-charging mode. During the magnetization mode, the machine's phase windings are energized by the dc-link voltage. The power converter and the machine phase windings are controlled with a three-phase relay to enable the use of the ac-dc rectifier. The power converter can work as a buck-boost-type or a buck-type dc-dc converter for charging the battery. Simulation results in MATLAB/Simulink and experiments on a 3-kW SR motor validate the effectiveness of the proposed technologies, which may have significant economic implications and improve the PHEVs' market acceptance

    Fault Diagnosis of Switched Reluctance Motors in Electrified Vehicle Applications

    Get PDF
    Electric vehicles (EVs) and hybrid electric vehicles (HEVs) can reduce greenhouse gas emissions while switched reluctance motors (SRMs) are one promising motor technology for EVs. This chapter illustrates the fault diagnosis and fault tolerance operation of SRM-based EVs/HEVs, where high reliability is a vital factor involving human lives. Based on the traditional asymmetric half-bridge topology for SRM drives, the characteristics of switching devices upon open-circuit and short-circuit are analyzed, and the corresponding fault diagnosis methods are developed. In order to achieve fault tolerance operation, the central point of SRM stator winding is tapped to form a modular half-bridge configuration to provide fault diagnosis and fault tolerance functions. The fault diagnosis functions are set idle in normal conditions. Simulation results in Matlab/Simulink and experimental results on a 150-W four-phase 8/6 SRM are used to validate the fault identification, and on a 750-W, three-phase 12/8 SRM are used to validate the fault tolerance operation of the proposed strategy, which may have significant implications for EV/HEV applications
    corecore