269 research outputs found

    Braneworld Dynamics of Inflationary Cosmologies with Exponential Potentials

    Full text link
    In this work we consider Randall-Sundrum braneworld type scenarios, in which the spacetime is described by a five-dimensional manifold with matter fields confined in a domain wall or three-brane. We present the results of a systematic analysis, using dynamical systems techniques, of the qualitative behaviour of Friedmann-Lemaitre-Robertson-Walker type models, whose matter is described by a scalar field with an exponential potential. We construct the state spaces for these models and discuss how their structure changes with respect to the general-relativistic case, in particular, what new critical points appear and their nature and the occurrence of bifurcation.Comment: 15 pages, 9 figures, RevTex 4. Submitted to Physical Review

    Foundations of population-based SHM, Part I : homogeneous populations and forms

    Get PDF
    In Structural Health Monitoring (SHM), measured data that correspond to an extensive set of operational and damage conditions (for a given structure) are rarely available. One potential solution considers that information might be transferred, in some sense, between similar systems. A population-based approach to SHM looks to both model and transfer this missing information, by considering data collected from groups of similar structures. Specifically, in this work, a framework is proposed to model a population of nominally-identical systems, such that (complete) datasets are only available from a subset of members. The SHM strategy defines a general model, referred to as the population form, which is used to monitor a homogeneous group of systems. First, the framework is demonstrated through applications to a simulated population, with one experimental (test-rig) member; the form is then adapted and applied to signals recorded from an operational wind farm

    Solar Neutrino Masses and Mixing from Bilinear R-Parity Broken Supersymmetry: Analytical versus Numerical Results

    Get PDF
    We give an analytical calculation of solar neutrino masses and mixing at one-loop order within bilinear R-parity breaking supersymmetry, and compare our results to the exact numerical calculation. Our method is based on a systematic perturbative expansion of R-parity violating vertices to leading order. We find in general quite good agreement between approximate and full numerical calculation, but the approximate expressions are much simpler to implement. Our formalism works especially well for the case of the large mixing angle MSW solution (LMA-MSW), now strongly favoured by the recent KamLAND reactor neutrino data.Comment: 34 pages, 14 ps figs, some clarifying comments adde

    Neutrino properties and the decay of the lightest supersymmetric particle

    Get PDF
    Supersymmetry with broken R-parity can explain the neutrino mass squared differences and mixing angles observed in neutrino oscillation experiments. In the minimal model, where R-parity is broken only by bilinear terms, certain decay properties of the lightest supersymmetric particle (LSP) are correlated with neutrino mixing angles. Here we consider charginos, squarks, gluinos and sneutrinos being the LSP and calculate their decay properties in bilinear R-parity breaking supersymmetry. Together with the decays of charged scalars and neutralinos calculated previously this completes the proof that bilinear R-parity breaking as the source of neutrino masses will be testable at future colliders. Moreover, we argue that in case of GMSB, the decays of the NLSP can be used to test the model.Comment: 15 pages, 8 figure

    Godel brane

    Full text link
    We consider the brane-world generalisation of the Godel universe and analyse its dynamical interaction with the bulk. The exact homogeneity of the standard Godel spacetime no longer holds, unless the bulk is also static. We show how the anisotropy of the Godel-type brane is dictated by that of the bulk and find that the converse is also true. This determines the precise evolution of the nonlocal anisotropic stresses, without any phenomenological assumptions, and leads to a self-consistent closed set of equations for the evolution of the Godel brane. We also examine the causality of the Godel brane and show that the presence of the bulk cannot prevent the appearance of closed timelike curves.Comment: Revised version, to match paper published in Phys. Rev.

    Reconstructing Neutrino Properties from Collider Experiments in a Higgs Triplet Neutrino Mass Model

    Get PDF
    We extend the minimal supersymmetric standard model with bilinear R-parity violation to include a pair of Higgs triplet superfields. The neutral components of the Higgs triplets develop small vacuum expectation values (VEVs) quadratic in the bilinear R-parity breaking parameters. In this scheme the atmospheric neutrino mass scale arises from bilinear R-parity breaking while for reasonable values of parameters the solar neutrino mass scale is generated from the small Higgs triplet VEVs. We calculate neutrino masses and mixing angles in this model and show how the model can be tested at future colliders. The branching ratios of the doubly charged triplet decays are related to the solar neutrino angle via a simple formula.Comment: 19 pages, 4 figures; one formula corrected, two author's names corrected; some explanatory comments adde

    Probing neutrino properties with charged scalar lepton decays

    Get PDF
    Supersymmetry with bilinear R-parity violation provides a predictive framework for neutrino masses and mixings in agreement with current neutrino oscillation data. The model leads to striking signals at future colliders through the R-parity violating decays of the lightest supersymmetric particle. Here we study charged scalar lepton decays and demonstrate that if the scalar tau is the LSP (i) it will decay within the detector, despite the smallness of the neutrino masses, (ii) the relative ratio of branching ratios Br({tilde tau}_1 --> e sum nu_i)/ Br({tilde tau}_1 --> mu sum nu_i) is predicted from the measured solar neutrino angle, and (iii) scalar muon and scalar electron decays will allow to test the consistency of the model. Thus, bilinear R-parity breaking SUSY will be testable at future colliders also in the case where the LSP is not the neutralino.Comment: 24 pages, 8 ps figs Report-no.: IFIC/02-33 and ZU-TH 11/0

    Chaotic Inflationary Universe on Brane

    Full text link
    The chaotic inflationary model of the early universe, proposed by Linde is explored in the brane world considering matter described by a minimally coupled self interacting scalar field. We obtain cosmological solutions which admit evolution of a universe either from a singularity or without a singularity. It is found that a very weakly coupled self-interacting scalar field is necessary for a quartic type potential in the brane world model compared to that necessary in general relativity. In the brane world sufficient inflation may be obtained even with an initial scalar field having value less than the Planck scale. It is found that if the universe is kinetic energy dominated to begin with, it transits to an inflationary stage subsequently.Comment: 13 pages, no fig., accepted in Physical Review

    Probing bilinear R-parity violating supergravity at the LHC

    Get PDF
    We study the collider phenomenology of bilinear R-parity violating supergravity, the simplest effective model for supersymmetric neutrino masses accounting for the current neutrino oscillation data. At the CERN Large Hadron Collider the center-of-mass energy will be high enough to probe directly these models through the search for the superpartners of the Standard Model (SM) particles. We analyze the impact of R-parity violation on the canonical supersymmetry searches - that is, we examine how the decay of the lightest supersymmetric particle (LSP) via bilinear R-parity violating interactions degrades the average expected missing momentum of the reactions and show how this diminishes the reach in the 'usual' channels for supersymmetry searches. However, the R-parity violating interactions lead to an enhancement of the final states containing isolated same-sign di-leptons and trileptons, compensating the reach loss in the fully inclusive channel. We show how the searches for displaced vertices associated to LSP decay substantially increase the coverage in supergravity parameter space, giving the corresponding reaches for two reference luminosities of 10 and 100 fb1^{-1} and compare with those of the R-parity conserving minimal supergravity model.Comment: Corrected version. To appear at JHE
    corecore