14,319 research outputs found

    Dynamics of active membranes with internal noise

    Full text link
    We study the time-dependent height fluctuations of an active membrane containing energy-dissipating pumps that drive the membrane out of equilibrium. Unlike previous investigations based on models that neglect either curvature couplings or random fluctuations in pump activities, our formulation explores two new models that take both of these effects into account. In the first model, the magnitude of the nonequilibrium forces generated by the pumps is allowed to fluctuate temporally. In the second model, the pumps are allowed to switch between "on" and "off" states. We compute the mean squared displacement of a membrane point for both models, and show that they exhibit distinct dynamical behaviors from previous models, and in particular, a superdiffusive regime specifically arising from the shot noise.Comment: 7 pages, 4 figure

    On generalizations of the series of Taylor, Lagrange, Laurent and Teixeira

    Get PDF
    The classical theorems of Taylor, Lagrange, Laurent and Teixeira, are extended from the representation of a complex function F(z), to its derivative F(ν)(z) of complex order ν, understood as either a Liouville (1832) or a Rieman (1847) differintegration (Campos 1984, 1985); these results are distinct from, and alternative to, other extensions of Taylor's series using differintegrations (Osler 1972, Lavoie & Osler & Tremblay 1976). We consider a complex function F(z), which is analytic (has an isolated singularity) at ζ, and expand its derivative of complex order F(ν)(z), in an ascending (ascending-descending) series of powers of an auxiliary function f(z), yielding the generalized Teixeira (Lagrange) series, which includes, for f(z)=z−ζ, the generalized Taylor (Laurent) series. The generalized series involve non-integral powers and/or coefficients evaluated by fractional derivatives or integrals, except in the case ν=0, when the classical theorems of Taylor (1715), Lagrange (1770), Laurent (1843) and Teixeira (1900) are regained. As an application, these generalized series can be used to generate special functions with complex parameters (Campos 1986), e.g., the Hermite and Bessel types

    Determining R-parity violating parameters from neutrino and LHC data

    Full text link
    In supersymmetric models neutrino data can be explained by R-parity violating operators which violate lepton number by one unit. The so called bilinear model can account for the observed neutrino data and predicts at the same time several decay properties of the lightest supersymmetric particle. In this paper we discuss the expected precision to determine these parameters by combining neutrino and LHC data and discuss the most important observables. We show that one can expect a rather accurate determination of the underlying R-parity parameters assuming mSUGRA relations between the R-parity conserving ones and discuss briefly also the general MSSM as well as the expected accuracies in case of a prospective e+ e- linear collider. An important observation is that several parameters can only be determined up to relative signs or more generally relative phases.Comment: 13 pages, 13 figure

    Finding the Higgs Boson through Supersymmetry

    Get PDF
    The study of displaced vertices containing two b--jets may provide a double discovery at the Large Hadron Collider (LHC): we show how it may not only reveal evidence for supersymmetry, but also provide a way to uncover the Higgs boson necessary in the formulation of the electroweak theory in a large region of the parameter space. We quantify this explicitly using the simplest minimal supergravity model with bilinear breaking of R-parity, which accounts for the observed pattern of neutrino masses and mixings seen in neutrino oscillation experiments.Comment: 7 pages, 7 figures. Final version to appear at PRD. Discussion and results were enlarge

    Probing Neutrino Oscillations in Supersymmetric Models at the Large Hadron Collider

    Get PDF
    The lightest supersymmetric particle may decay with branching ratios that correlate with neutrino oscillation parameters. In this case the CERN Large Hadron Collider (LHC) has the potential to probe the atmospheric neutrino mixing angle with sensitivity competitive to its low-energy determination by underground experiments. Under realistic detection assumptions, we identify the necessary conditions for the experiments at CERN's LHC to probe the simplest scenario for neutrino masses induced by minimal supergravity with bilinear R parity violation.Comment: 11 pages, 6 figures. To appear in Physical Review
    • …
    corecore