36 research outputs found

    Universal Behaviors as Candidate Traditions in Wild Spider Monkeys

    Get PDF
    Candidate traditions were documented across three communities of wild spider monkeys (Ateles geoffroyi) using an a priori approach to identify behavioral variants and a statistical approach to examine differences in their proportional use. This methodology differs from previous studies of animal traditions, which used retrospective data and relied on the ‘exclusion method’ to identify candidate traditions. Our a priori approach increased the likelihood that behavior variants with equivalent functions were considered and our statistical approach enabled the proportional use of ‘universal’ behaviors, i.e., used across all communities, to be examined for the first time in any animal species as candidate traditions. Among universal behaviors we found 14 ‘community preferred’ variants. After considering the extent to which community preferred variants were due to ecological and, to a lesser degree, genetic differences, we concluded that at least six were likely maintained through social learning. Our findings have two main implications: (i) tradition repertoires could be larger than assumed from previous studies using the exclusion method; (ii) the relative use of universal behavior variants can reinforce community membership

    Demonstration of Protein-Based Human Identification Using the Hair Shaft Proteome

    Get PDF
    YesHuman identification from biological material is largely dependent on the ability to characterize genetic polymorphisms in DNA. Unfortunately, DNA can degrade in the environment, sometimes below the level at which it can be amplified by PCR. Protein however is chemically more robust than DNA and can persist for longer periods. Protein also contains genetic variation in the form of single amino acid polymorphisms. These can be used to infer the status of non-synonymous single nucleotide polymorphism alleles. To demonstrate this, we used mass spectrometry-based shotgun proteomics to characterize hair shaft proteins in 66 European-American subjects. A total of 596 single nucleotide polymorphism alleles were correctly imputed in 32 loci from 22 genes of subjects’ DNA and directly validated using Sanger sequencing. Estimates of the probability of resulting individual non-synonymous single nucleotide polymorphism allelic profiles in the European population, using the product rule, resulted in a maximum power of discrimination of 1 in 12,500. Imputed non-synonymous single nucleotide polymorphism profiles from European–American subjects were considerably less frequent in the African population (maximum likelihood ratio = 11,000). The converse was true for hair shafts collected from an additional 10 subjects with African ancestry, where some profiles were more frequent in the African population. Genetically variant peptides were also identified in hair shaft datasets from six archaeological skeletal remains (up to 260 years old). This study demonstrates that quantifiable measures of identity discrimination and biogeographic background can be obtained from detecting genetically variant peptides in hair shaft protein, including hair from bioarchaeological contexts.The Technology Commercialization Innovation Program (Contracts #121668, #132043) of the Utah Governors Office of Commercial Development, the Scholarship Activitie

    Searching for the origins of bere barley: a geometric morphometric approach to cereal landrace recognition in archaeology

    Get PDF
    Bere is a landrace of barley, adapted to the marginal conditions of northern Scotland, especially those of the Northern and Western Isles. The history of bere on these islands is long and, in an era of diminishing landrace cultivation, bere now represents one of the oldest cereal landraces in Europe still grown commercially. The longevity of bere raises the possibility of using grain characteristics of present-day specimens to identify bere in the archaeological record. Geometric modern morphometric (GMM) analysis of grains from bere and other barley landraces is conducted to determine whether landraces can be differentiated on grain morphology. Results indicate that there are morphological differences between bere and other British and Scandinavian landraces, and between bere from Orkney and the Western Isles, both of which are apparent in genetic analysis. This finding paves the way for the identification of bere archaeologically, helping to establish its status as living heritage and securing its commercial future. More broadly, this work indicates the potential of grain GMM for the recognition of cereal landraces, permitting the ancestry and exchange of landraces to be traced in the archaeological record
    corecore