741 research outputs found
Evaluating machine learning techniques for predicting power spectra from reionization simulations
Upcoming experiments such as the SKA will provide huge quantities of data. Fast modelling of the high-redshift 21cm signal will be crucial for efficiently comparing these data sets with theory. The most detailed theoretical predictions currently come from numerical simulations and from faster but less accurate semi-numerical simulations. Recently, machine learning techniques have been proposed to emulate the behaviour of these semi-numerical simulations with drastically reduced time and computing cost. We compare the viability of five such machine learning techniques for emulating the 21cm power spectrum of the publicly-available code SimFast21. Our best emulator is a multilayer perceptron with three hidden layers, reproducing SimFast21 power spectra times faster than the simulation with 4% mean squared error averaged across all redshifts and input parameters. The other techniques (interpolation, Gaussian processes regression, and support vector machine) have slower prediction times and worse prediction accuracy than the multilayer perceptron. All our emulators can make predictions at any redshift and scale, which gives more flexible predictions but results in significantly worse prediction accuracy at lower redshifts. We then present a proof-of-concept technique for mapping between two different simulations, exploiting our best emulator's fast prediction speed. We demonstrate this technique to find a mapping between SimFast21 and another publicly-available code 21cmFAST. We observe a noticeable offset between the simulations for some regions of the input space. Such techniques could potentially be used as a bridge between fast semi-numerical simulations and accurate numerical radiative transfer simulations
Progestin Receptor-Mediated Reduction of Anxiety-Like Behavior in Male Rats
BACKGROUND: It is well known progesterone can have anxiolytic-like effects in animals in a number of different behavioral testing paradigms. Although progesterone is known to influence physiology and behavior by binding to classical intracellular progestin receptors, progesterone's anxiety reducing effects have solely been attributed to its rapid non-genomic effects at the GABA A receptor. This modulation occurs following the bioconversion of progesterone to allopregnanolone. Seemingly paradoxical results from some studies suggested that the function of progesterone to reduce anxiety-like behavior may not be entirely clear; therefore, we hypothesized that progesterone might also act upon progestin receptors to regulate anxiety. METHODOLOGY/PRINCIPAL FINDINGS: To test this, we examined the anxiolytic-like effects of progesterone in male rats using the elevated plus maze, a validated test of anxiety, and the light/dark chamber in the presence or absence of a progestin receptor antagonist, RU 486. Here we present evidence suggesting that the anxiolytic-like effects of progesterone in male rats can be mediated, in part, by progestin receptors, as these effects are blocked by prior treatment with a progestin receptor antagonist. CONCLUSION/SIGNIFICANCE: This indicates that progesterone can act upon progestin receptors to regulate anxiety-like behavior in the male rat brain
Functional Analysis of Conserved Non-Coding Regions Around the Short Stature hox Gene (shox) in Whole Zebrafish Embryos
Background: Mutations in the SHOX gene are responsible for Leri-Weill Dyschondrosteosis, a disorder characterised by
mesomelic limb shortening. Recent investigations into regulatory elements surrounding SHOX have shown that deletions of conserved non-coding elements (CNEs) downstream of the SHOX gene produce a phenotype indistinguishable from Leri-Weill Dyschondrosteosis. As this gene is not found in rodents, we used zebrafish as a model to characterise the expression pattern of the shox gene across the whole embryo and characterise the enhancer domains of different CNEs associated with this gene.
Methodology/Principal Findings: Expression of the shox gene in zebrafish was identified using in situ hybridization, with embryos showing expression in the blood, putative heart, hatching gland, brain pharyngeal arch, olfactory epithelium, and fin bud apical ectodermal ridge. By identifying sequences showing 65% identity over at least 40 nucleotides between Fugu, human, dog and opossum we uncovered 35 CNEs around the shox gene. These CNEs were compared with CNEs previously discovered by Sabherwal et al.
,resulting in the identification of smaller more deeply conserved sub-sequence. Sabherwal et al.’s CNEs were assayed for regulatory function in whole zebrafish embryos resulting in the identification of additional tissues under the regulatory control of these CNEs.
Conclusion/Significance: Our results using whole zebrafish embryos have provided a more comprehensive picture of the
expression pattern of the shox gene, and a better understanding of its regulation via deeply conserved noncoding elements. In particular, we identify additional tissues under the regulatory control of previously identified SHOX CNEs. We also demonstrate the importance of these CNEs in evolution by identifying duplicated shox
CNEs and more deeply conserved sub-sequences within already identified CNEs
Alternative Oxidase Mediates Pathogen Resistance in Paracoccidioides brasiliensis Infection
Thermally dimorphic pathogenic fungi are responsible for potentially life-threatening diseases of immunocompetent and immunocompromised individuals. These microorganisms grow as conidia-producing mycelia in the environment, which when inhaled by the host convert to the pathogenic yeast form at 37°C. During adaptation and growth, fungi interact with host immune cells and must cope with defense mechanisms such as imposed-oxidative stress (e.g., reactive oxygen species; ROS). Alternative oxidase (AOX) is an enzyme recently implicated in the reduction of ROS production by the mitochondria when triggered by external stimuli, such as temperature and ROS. During this work we have evaluated the relevance of AOX during infection with Paracoccidioides brasiliensis, the etiological agent of one of the most prevalent mycoses in Latin America, paracoccidioidomycosis. We show that PbAOX gene expression is stimulated after interaction with alveolar macrophages or in the presence of H2O2 and is essential for survival against fungicidal activity of both the immune cells and the ROS compound. Moreover, decreasing PbAOX gene expression in P. brasiliensis led to increased survival of infected mice. Altogether, our data supports a relevant role for AOX in the virulence of P. brasiliensis
Inhibition of PbGP43 expression may suggest that gp43 is a virulence factor in Paracoccidioides brasiliensis
ABSTARCT: Glycoprotein gp43 is an immunodominant diagnostic antigen for paracoccidioidomycosis caused by Paracoccidioides brasiliensis. It is abundantly secreted in isolates such as Pb339. It is structurally related to beta-1,3-exoglucanases, however inactive. Its function in fungal biology is unknown, but it elicits humoral, innate and protective cellular immune responses; it binds to extracellular matrix-associated proteins. In this study we applied an antisense RNA (aRNA) technology and Agrobacterium tumefaciens-mediated transformation to generate mitotically stable PbGP43 mutants (PbGP43 aRNA) derived from wild type Pb339 to study its role in P. brasiliensis biology and during infection. Control PbEV was transformed with empty vector. Growth curve, cell vitality and morphology of PbGP43 aRNA mutants were indistinguishable from those of controls. PbGP43 expression was reduced 80-85% in mutants 1 and 2, as determined by real time PCR, correlating with a massive decrease in gp43 expression. This was shown by immunoblotting of culture supernatants revealed with anti-gp43 mouse monoclonal and rabbit polyclonal antibodies, and also by affinity-ligand assays of extracellular molecules with laminin and fibronectin. In vitro, there was significantly increased TNF-α production and reduced yeast recovery when PbGP43 aRNA1 was exposed to IFN-γ-stimulated macrophages, suggesting reduced binding/uptake and/or increased killing. In vivo, fungal burden in lungs of BALB/c mice infected with silenced mutant was negligible and associated with decreased lung ΙΛ-10 and IL-6. Therefore, our results correlated low gp43 expression with lower pathogenicity in mice, but that will be definitely proven when PbGP43 knockouts become available.
Why it takes an 'ontological shock' to prompt increases in small firm resilience : sensemaking, emotions and flood risk
This article uses a sensemaking approach to understand small firms’ responses to the threat of external shocks. By analysing semi-structured interviews with owners of flooded small firms, we investigate how owners process flood experiences and explore why such experiences do not consistently lead to the resilient adaptation of premises. We, conclude that some of the explanation for low levels of adaptation relates to a desire to defend existing sensemaking structures and associated identities. Sensemaking structures are only revised if these structures are not critical to business identity, or if a flood constitutes an ‘ontological shock’ and renders untenable existing assumptions regarding long-term business continuity. This article has implications for adaptation to the growing risk of flooding, climate change and external shocks. Future research analysing external shocks would benefit from using a sensemaking approach and survey studies should include measurements of ‘ontological’ impact as well as material and financial damage. In addition, those designing information campaigns should take account of small firms’ resistance to information that threatens their existing sensemaking structures and social identities
Regulation of Kainate Receptor Subunit mRNA by Stress and Corticosteroids in the Rat Hippocampus
Kainate receptors are a class of ionotropic glutamate receptors that have a role in the modulation of glutamate release and synaptic plasticity in the hippocampal formation. Previous studies have implicated corticosteroids in the regulation of these receptors and recent clinical work has shown that polymorphisms in kainate receptor subunit genes are associated with susceptibility to major depression and response to anti-depressant treatment. In the present study we sought to examine the effects of chronic stress and corticosteroid treatments upon the expression of the mRNA of kainate receptor subunits GluR5-7 and KA1-2. Our results show that, after 7 days, adrenalectomy results in increased expression of hippocampal KA1, GluR6 and GluR7 mRNAs, an effect which is reversed by treatment with corticosterone in the case of KA1 and GluR7 and by aldosterone treatment in the case of GluR6. 21 days of chronic restraint stress (CRS) elevated the expression of the KA1 subunit, but had no effect on the expression of the other subunits. Similarly, 21 days of treatment with a moderate dose of corticosterone also increased KA1 mRNA in the dentate gyrus, whereas a high corticosterone dose has no effect. Our results suggest an interaction between hippocampal kainate receptor composition and the hypothalamic-pituitary-adrenal (HPA) axis and show a selective chronic stress induced modulation of the KA1 subunit in the dentate gyrus and CA3 that has implications for stress-induced adaptive structural plasticity
Electromagnetic Field Effect or Simply Stress? Effects of UMTS Exposure on Hippocampal Longterm Plasticity in the Context of Procedure Related Hormone Release
Harmful effects of electromagnetic fields (EMF) on cognitive and behavioural features of humans and rodents have been controversially discussed and raised persistent concern about adverse effects of EMF on general brain functions. In the present study we applied radio-frequency (RF) signals of the Universal Mobile Telecommunications System (UMTS) to full brain exposed male Wistar rats in order to elaborate putative influences on stress hormone release (corticosteron; CORT and adrenocorticotropic hormone; ACTH) and on hippocampal derived synaptic long-term plasticity (LTP) and depression (LTD) as electrophysiological hallmarks for memory storage and memory consolidation. Exposure was computer controlled providing blind conditions. Nominal brain-averaged specific absorption rates (SAR) as a measure of applied mass-related dissipated RF power were 0, 2, and 10 W/kg over a period of 120 min. Comparison of cage exposed animals revealed, regardless of EMF exposure, significantly increased CORT and ACTH levels which corresponded with generally decreased field potential slopes and amplitudes in hippocampal LTP and LTD. Animals following SAR exposure of 2 W/kg (averaged over the whole brain of 2.3 g tissue mass) did not differ from the sham-exposed group in LTP and LTD experiments. In contrast, a significant reduction in LTP and LTD was observed at the high power rate of SAR (10 W/kg). The results demonstrate that a rate of 2 W/kg displays no adverse impact on LTP and LTD, while 10 W/kg leads to significant effects on the electrophysiological parameters, which can be clearly distinguished from the stress derived background. Our findings suggest that UMTS exposure with SAR in the range of 2 W/kg is not harmful to critical markers for memory storage and memory consolidation, however, an influence of UMTS at high energy absorption rates (10 W/kg) cannot be excluded
Domains of Chronic Stress, Lifestyle Factors, and Allostatic Load in Middle-Aged Mexican-American Women
Abstract available at publisher's website
- …