538 research outputs found

    SuperCLASS - II. Photometric redshifts and characteristics of spatially resolved mu Jy radio sources

    Get PDF
    We present optical and near-infrared imaging covering a ∼1.53 deg2 region in the Super-Cluster Assisted Shear Survey (SuperCLASS) field, which aims to make the first robust weak lensing measurement at radio wavelengths. We derive photometric redshifts for ≈176 000 sources down to i′AB∼24 and present photometric redshifts for 1.4 GHz expanded Multi-Element Radio Linked Interferometer Network (e-MERLIN) and Karl G. Jansky Very Large Array (VLA) detected radio sources found in the central 0.26 deg2. We compile an initial catalogue of 149 radio sources brighter than S1.4 > 75 μJy and find their photometric redshifts span 0 7σ in the density map and we confirm the photometric redshifts are consistent with previously measured spectra from a few galaxies at the cluster centres

    Rational Design of Temperature-Sensitive Alleles Using Computational Structure Prediction

    Get PDF
    Temperature-sensitive (ts) mutations are mutations that exhibit a mutant phenotype at high or low temperatures and a wild-type phenotype at normal temperature. Temperature-sensitive mutants are valuable tools for geneticists, particularly in the study of essential genes. However, finding ts mutations typically relies on generating and screening many thousands of mutations, which is an expensive and labor-intensive process. Here we describe an in silico method that uses Rosetta and machine learning techniques to predict a highly accurate “top 5” list of ts mutations given the structure of a protein of interest. Rosetta is a protein structure prediction and design code, used here to model and score how proteins accommodate point mutations with side-chain and backbone movements. We show that integrating Rosetta relax-derived features with sequence-based features results in accurate temperature-sensitive mutation predictions

    Findings from a feasibility study to improve GP elicitation of patient concerns in UK General Practice consultations

    Get PDF
    Objectives To establish: a) feasibility of training GPs in a communication intervention to solicit additional patient concerns early in the consultation, using specific lexical formulations (“do you have ‘any’ vs. ‘some’ other concerns?”) noting the impact on consultation length, and b) whether patients attend with multiple concerns and whether they voiced them in the consultation. Methods A mixed-methods three arm RCT feasibility study to assess the feasibility of the communication intervention. Results Intervention fidelity was high. GPs can be trained to solicit additional concerns early in the consultation (once patients have presented their first concern). Whilst feasible the particular lexical variation of ‘any’ vs ‘some’ seemed to have no bearing on the number of patient concerns elicited, on consultation length or on patient satisfaction. The level of missing questionnaire data was low, suggesting patients found completion of questionnaires acceptable. Conclusion GPs can solicit for additional concerns without increasing consultation length, but the particular wording, specifically ‘any’ vs. ‘some’ may not be as important as the placement of the GP solicitation

    A new multicompartmental reaction-diffusion modeling method links transient membrane attachment of E. coli MinE to E-ring formation

    Get PDF
    Many important cellular processes are regulated by reaction-diffusion (RD) of molecules that takes place both in the cytoplasm and on the membrane. To model and analyze such multicompartmental processes, we developed a lattice-based Monte Carlo method, Spatiocyte that supports RD in volume and surface compartments at single molecule resolution. Stochasticity in RD and the excluded volume effect brought by intracellular molecular crowding, both of which can significantly affect RD and thus, cellular processes, are also supported. We verified the method by comparing simulation results of diffusion, irreversible and reversible reactions with the predicted analytical and best available numerical solutions. Moreover, to directly compare the localization patterns of molecules in fluorescence microscopy images with simulation, we devised a visualization method that mimics the microphotography process by showing the trajectory of simulated molecules averaged according to the camera exposure time. In the rod-shaped bacterium _Escherichia coli_, the division site is suppressed at the cell poles by periodic pole-to-pole oscillations of the Min proteins (MinC, MinD and MinE) arising from carefully orchestrated RD in both cytoplasm and membrane compartments. Using Spatiocyte we could model and reproduce the _in vivo_ MinDE localization dynamics by accounting for the established properties of MinE. Our results suggest that the MinE ring, which is essential in preventing polar septation, is largely composed of MinE that is transiently attached to the membrane independently after recruited by MinD. Overall, Spatiocyte allows simulation and visualization of complex spatial and reaction-diffusion mediated cellular processes in volumes and surfaces. As we showed, it can potentially provide mechanistic insights otherwise difficult to obtain experimentally

    Emergent global patterns of ecosystem structure and function from a mechanistic general ecosystem model

    Get PDF
    Anthropogenic activities are causing widespread degradation of ecosystems worldwide, threatening the ecosystem services upon which all human life depends. Improved understanding of this degradation is urgently needed to improve avoidance and mitigation measures. One tool to assist these efforts is predictive models of ecosystem structure and function that are mechanistic: based on fundamental ecological principles. Here we present the first mechanistic General Ecosystem Model (GEM) of ecosystem structure and function that is both global and applies in all terrestrial and marine environments. Functional forms and parameter values were derived from the theoretical and empirical literature where possible. Simulations of the fate of all organisms with body masses between 10 µg and 150,000 kg (a range of 14 orders of magnitude) across the globe led to emergent properties at individual (e.g., growth rate), community (e.g., biomass turnover rates), ecosystem (e.g., trophic pyramids), and macroecological scales (e.g., global patterns of trophic structure) that are in general agreement with current data and theory. These properties emerged from our encoding of the biology of, and interactions among, individual organisms without any direct constraints on the properties themselves. Our results indicate that ecologists have gathered sufficient information to begin to build realistic, global, and mechanistic models of ecosystems, capable of predicting a diverse range of ecosystem properties and their response to human pressures

    Spatio-temporal Models of Lymphangiogenesis in Wound Healing

    Full text link
    Several studies suggest that one possible cause of impaired wound healing is failed or insufficient lymphangiogenesis, that is the formation of new lymphatic capillaries. Although many mathematical models have been developed to describe the formation of blood capillaries (angiogenesis), very few have been proposed for the regeneration of the lymphatic network. Lymphangiogenesis is a markedly different process from angiogenesis, occurring at different times and in response to different chemical stimuli. Two main hypotheses have been proposed: 1) lymphatic capillaries sprout from existing interrupted ones at the edge of the wound in analogy to the blood angiogenesis case; 2) lymphatic endothelial cells first pool in the wound region following the lymph flow and then, once sufficiently populated, start to form a network. Here we present two PDE models describing lymphangiogenesis according to these two different hypotheses. Further, we include the effect of advection due to interstitial flow and lymph flow coming from open capillaries. The variables represent different cell densities and growth factor concentrations, and where possible the parameters are estimated from biological data. The models are then solved numerically and the results are compared with the available biological literature.Comment: 29 pages, 9 Figures, 6 Tables (39 figure files in total

    5-Formylcytosine alters the structure of the DNA double helix.

    Get PDF
    The modified base 5-formylcytosine (5fC) was recently identified in mammalian DNA and might be considered to be the 'seventh' base of the genome. This nucleotide has been implicated in active demethylation mediated by the base excision repair enzyme thymine DNA glycosylase. Genomics and proteomics studies have suggested an additional role for 5fC in transcription regulation through chromatin remodeling. Here we propose that 5fC might affect these processes through its effect on DNA conformation. Biophysical and structural analysis revealed that 5fC alters the structure of the DNA double helix and leads to a conformation unique among known DNA structures including those comprising other cytosine modifications. The 1.4-Å-resolution X-ray crystal structure of a DNA dodecamer comprising three 5fCpG sites shows how 5fC changes the geometry of the grooves and base pairs associated with the modified base, leading to helical underwinding.E.-A.R. is supported as a Herchel Smith Fellow. The Balasubramanian laboratory is supported by a Senior Investigator Award from the Wellcome Trust (099232/Z/12/Z to S.B.), and it also receives core funding from Cancer Research UK (C9681/A11961 to S.B.). D.Y.C. is supported by the Crystallographic X-ray Facility (CXF) at the Department of Biochemistry, University of Cambridge, and B.F.L. is supported by the Wellcome Trust (076846/Z/05/A to B.F.L.). We thank the staff of Soleil and Diamond Light Source for use of facilities. We thank C. Calladine for stimulating discussions.This is the accepted manuscript for a paper published in Nature Structural & Molecular Biology 22, 44–49 (2015) doi: 10.1038/nsmb.293

    Crystal Structure of a Complex of DNA with One AT-Hook of HMGA1

    Get PDF
    We present here for the first time the crystal structure of an AT-hook domain. We show the structure of an AT-hook of the ubiquitous nuclear protein HMGA1, combined with the oligonucleotide d(CGAATTAATTCG)2, which has two potential AATT interacting groups. Interaction with only one of them is found. The structure presents analogies and significant differences with previous NMR studies: the AT-hook forms hydrogen bonds between main-chain NH groups and thymines in the minor groove, DNA is bent and the minor groove is widened

    The Human Frontal Oculomotor Cortical Areas Contribute Asymmetrically to Motor Planning in a Gap Saccade Task

    Get PDF
    BACKGROUND: Saccadic eye movements are used to rapidly align the fovea with the image of objects of interest in peripheral vision. We have recently shown that in children there is a high preponderance of quick latency but poorly planned saccades that consistently fall short of the target goal. The characteristics of these multiple saccades are consistent with a lack of proper inhibitory control of cortical oculomotor areas on the brainstem saccade generation circuitry. METHODOLOGY/PRINCIPAL FINDINGS: In the present paper, we directly tested this assumption by using single pulse transcranial magnetic stimulation (TMS) to transiently disrupt neuronal activity in the frontal eye fields (FEF) and supplementary eye fields (SEF) in adults performing a gap saccade task. The results showed that the incidence of multiple saccades was increased for ispiversive but not contraversive directions for the right and left FEF, the left SEF, but not for the right SEF. Moreover, this disruption was most substantial during the approximately 50 ms period around the appearance of the peripheral target. A control condition in which the dorsal motor cortex was stimulated demonstrated that this was not due to any non-specific effects of the TMS influencing the spatial distribution of attention. CONCLUSIONS/SIGNIFICANCE: Taken together, the results are consistent with a direction-dependent role of the FEF and left SEF in delaying the release of saccadic eye movements until they have been fully planned
    corecore