199 research outputs found

    The impact of CFNS-causing EFNB1 mutations on ephrin-B1 function

    Get PDF
    BACKGROUND: Mutations of EFNB1 cause the X-linked malformation syndrome craniofrontonasal syndrome (CFNS). CFNS is characterized by an unusual phenotypic pattern of inheritance, because it affects heterozygous females more severely than hemizygous males. This sex-dependent inheritance has been explained by random X-inactivation in heterozygous females and the consequences of cellular interference of wild type and mutant EFNB1-expressing cell populations. EFNB1 encodes the transmembrane protein ephrin-B1, that forms bi-directional signalling complexes with Eph receptor tyrosine kinases expressed on complementary cells. Here, we studied the effects of patient-derived EFNB1 mutations predicted to give rise to truncated ephrin-B1 protein or to disturb Eph/ephrin-B1 reverse ephrin-B1 signalling. Five mutations are investigated in this work: nonsense mutation c.196C > T/p.R66X, frameshift mutation c.614_615delCT, splice-site mutation c.406 + 2T > C and two missense mutations p.P54L and p.T111I. Both missense mutations are located in the extracellular ephrin domain involved in Eph-ephrin-B1 recognition and higher order complex formation. METHODS: Nonsense mutation c.196C > T/p.R66X, frameshift mutation c.614_615delCT and splice-site mutation c.406+2T > C were detected in the primary patient fibroblasts by direct sequencing of the DNA and were further analysed by RT-PCR and Western blot analyses.The impact of missense mutations p.P54L and p.T111I on cell behaviour and reverse ephrin-B1 cell signalling was analysed in a cell culture model using NIH 3T3 fibroblasts. These cells were transfected with the constructs generated by in vitro site-directed mutagenesis. Investigation of missense mutations was performed using the Western blot analysis and time-lapse microscopy. RESULTS AND DISCUSSION: Nonsense mutation c.196C > T/p.R66X and frameshift mutation c.614_615delCT escape nonsense-mediated RNA decay (NMD), splice-site mutation c.406+2T > C results in either retention of intron 2 or activation of a cryptic splice site in exon 2. However, c.614_615delCT and c.406+2T > C mutations were found to be not compatible with production of a soluble ephrin-B1 protein. Protein expression of the p.R66X mutation was predicted unlikely but has not been investigated.Ectopic expression of p.P54L ephrin-B1 resists Eph-receptor mediated cell cluster formation in tissue culture and intracellular ephrin-B1 Tyr324 and Tyr329 phosphorylation. Cells expressing p.T111I protein show similar responses as wild type expressing cells, however, phosphorylation of Tyr324 and Tyr329 is reduced. CONCLUSIONS: Pathogenic mechanisms in CFNS manifestation include impaired ephrin-B1 signalling combined with cellular interference

    AKT1 Loss Correlates with Episomal HPV16 in Vulval Intraepithelial Neoplasia

    Get PDF
    Anogenital malignancy has a significant association with high-risk mucosal alpha-human papillomaviruses (alpha-PV), particularly HPV 16 and 18 whereas extragenital SCC has been linked to the presence of cutaneous beta and gamma–HPV types. Vulval skin may be colonised by both mucosal and cutaneous (beta-, mu-, nu- and gamma-) PV types, but there are few systematic studies investigating their presence and their relative contributions to vulval malignancy. Dysregulation of AKT, a serine/threonine kinase, plays a significant role in several cancers. Mucosal HPV types can increase AKT phosphorylation and activity whereas cutaneous HPV types down-regulate AKT1 expression, probably to weaken the cornified envelope to promote viral release. We assessed the presence of mucosal and cutaneous HPV in vulval malignancy and its relationship to AKT1 expression in order to establish the corresponding HPV and AKT1 profile of normal vulval skin, vulval intraepithelial neoplasia (VIN) and vulval squamous cell carcinoma (vSCC). We show that HPV16 is the principle HPV type present in VIN, there were few detectable beta types present and AKT1 loss was not associated with the presence of these cutaneous HPV. We show that HPV16 early gene expression reduced AKT1 expression in transgenic mouse epidermis. AKT1 loss in our VIN cohort correlated with presence of high copy number, episomal HPV16. Maintained AKT1 expression correlated with low copy number, an increased frequency of integration and increased HPV16E7 expression, a finding we replicated in another untyped cohort of vSCC. Since expression of E7 reflects tumour progression, these findings suggest that AKT1 loss associated with episomal HPV16 may have positive prognostic implications in vulval malignancy

    Fault-controlled hydration of the upper mantle during continental rifting

    Get PDF
    Water and carbon are transferred from the ocean to the mantle in a process that alters mantle peridotite to create serpentinite and supports diverse ecosystems1. Serpentinized mantle rocks are found beneath the sea floor at slow- to ultraslow-spreading mid-ocean ridges1 and are thought to be present at about half the world’s rifted margins2, 3. Serpentinite is also inferred to exist in the downgoing plate at subduction zones4, where it may trigger arc magmatism or hydrate the deep Earth. Water is thought to reach the mantle via active faults3, 4. Here we show that serpentinization at the rifted continental margin offshore from western Spain was probably initiated when the whole crust cooled to become brittle and deformation was focused along large normal faults. We use seismic tomography to image the three-dimensional distribution of serpentinization in the mantle and find that the local volume of serpentinite beneath thinned, brittle crust is related to the amount of displacement along each fault. This implies that sea water reaches the mantle only when the faults are active. We estimate the fluid flux along the faults and find it is comparable to that inferred for mid-ocean ridge hydrothermal systems. We conclude that brittle processes in the crust may ultimately control the global flux of sea water into the Earth

    The individual environment, not the family is the most important influence on preferences for common non-alcoholic beverages in adolescence

    Get PDF
    Beverage preferences are an important driver of consumption, and strong liking for beverages high in energy (e.g. sugar-sweetened beverages [SSBs]) and dislike for beverages low in energy (e.g. non-nutritive sweetened beverages [NNSBs]) are potentially modifiable risk factors contributing to variation in intake. Twin studies have established that both genes and environment play important roles in shaping food preferences; but the aetiology of variation in non-alcoholic beverage preferences is unknown. 2865 adolescent twins (18–19-years old) from the Twins Early Development Study were used to quantify genetic and environmental influence on variation in liking for seven non-alcoholic beverages: SSBs; NNSBs; fruit cordials, orange juice, milk, coffee, and tea. Maximum Likelihood Structural Equation Modelling established that beverage preferences have a moderate to low genetic basis; from 18% (95% CI: 10%, 25%) for orange juice to 42% (36%, 43%) for fruit cordials. Aspects of the environment that are not shared by twin pairs explained all remaining variance in drink preferences. The sizeable unique environmental influence on beverage preferences highlights the potential for environmental modification. Policies and guidelines to change preferences for unhealthy beverages may therefore be best directed at the wider environment

    Transcriptomes and expression profiling of deep-sea corals from the Red Sea provide insight into the biology of azooxanthellate corals

    Get PDF
    Despite the importance of deep-sea corals, our current understanding of their ecology and evolutionis limited due to difficulties in sampling and studying deep-sea environments. Moreover, a recent reevaluation of habitat limitations has been suggested after characterization of deep-sea corals in the Red Sea, where they live at temperatures of above 20 °C at low oxygen concentrations. To gain further insight into the biology of deep-sea corals, we produced reference transcriptomes and studied gene expression of three deep-sea coral species from the Red Sea, i.e. Dendrophyllia sp., Eguchipsammia fistula, and Rhizotrochus typus. Our analyses suggest that deep-sea coral employ mitochondrial hypometabolism and anaerobic glycolysis to manage low oxygen conditions present in the Red Sea. Notably, we found expression of genes related to surface cilia motion that presumably enhance small particle transport rates in the oligotrophic deep-sea environment. This is the first study to characterize transcriptomes and in situ gene expression for deep-sea corals. Our work offers several mechanisms by which deep-sea corals might cope with the distinct environmental conditions present in the Red Sea. As such, our data provides direction for future research and further insight to organismal response of deep sea coral to environmental change and ocean warming.Tis work was supported by King Abdullah University of Science and Technology (KAUST), baseline funds to CRV and Center Competitive Funding (CCF) Program FCC/1/1973-18-01

    A quantitative analysis of the effect of cycle length on arrhythmogenicity in hypokalaemic Langendorff-perfused murine hearts

    Get PDF
    The clinically established proarrhythmic effect of bradycardia and antiarrhythmic effect of lidocaine (10 μM) were reproduced in hypokalaemic (3.0 mM K+) Langendorff-perfused murine hearts paced over a range (80–180 ms) of baseline cycle lengths (BCLs). Action potential durations (at 90% repolarization, APD90s), transmural conduction times and ventricular effective refractory periods (VERPs) were then determined from monophasic action potential records obtained during a programmed electrical stimulation procedure in which extrasystolic stimuli were interposed following regular stimuli at successively decreasing coupling intervals. A novel graphical analysis of epicardial and endocardial, local and transmural relationships between APD90, corrected for transmural conduction time where appropriate, and VERP yielded predictions in precise agreement with the arrhythmogenic findings obtained over the entire range of BCLs studied. Thus, in normokalaemic (5.2 mM K+) hearts a statistical analysis confirmed that all four relationships were described by straight lines of gradients not significantly (P > 0.05) different from unity that passed through the origin and thus subtended constant critical angles, θ with the abscissa (45.8° ± 0.9°, 46.6° ± 0.5°, 47.6° ± 0.5° and 44.9° ± 0.8°, respectively). Hypokalaemia shifted all points to the left of these reference lines, significantly (P < 0.05) increasing θ at BCLs of 80–120 ms where arrhythmic activity was not observed (∼63°, ∼54°, ∼55° and ∼58°, respectively) and further significantly (P < 0.05) increasing θ at BCLs of 140–180 ms where arrhythmic activity was observed (∼68°, ∼60°, ∼61° and ∼65°, respectively). In contrast, the antiarrhythmic effect of lidocaine treatment was accompanied by a significant (P < 0.05) disruption of this linear relationship and decreases in θ in both normokalaemic (∼40°, ∼33°, ∼39° and ∼41°, respectively) and hypokalaemic (∼40°, ∼44°, ∼50° and ∼48°, respectively) hearts. This extended a previous approach that had correlated alterations in transmural repolarization gradients with arrhythmogenicity in murine models of the congenital long QT syndrome type 3 and hypokalaemia at a single BCL. Thus, the analysis in terms of APD90 and VERP provided a more sensitive indication of the effect of lidocaine than one only considering transmural repolarization gradients and may be particularly applicable in physiological and pharmacological situations in which these parameters diverge

    Identification of β-Secretase (BACE1) Substrates Using Quantitative Proteomics

    Get PDF
    β-site APP cleaving enzyme 1 (BACE1) is a transmembrane aspartyl protease with a lumenal active site that sheds the ectodomains of membrane proteins through juxtamembrane proteolysis. BACE1 has been studied principally for its role in Alzheimer's disease as the β-secretase responsible for generating the amyloid-β protein. Emerging evidence from mouse models has identified the importance of BACE1 in myelination and cognitive performance. However, the substrates that BACE1 processes to regulate these functions are unknown, and to date only a few β-secretase substrates have been identified through candidate-based studies. Using an unbiased approach to substrate identification, we performed quantitative proteomic analysis of two human epithelial cell lines stably expressing BACE1 and identified 68 putative β-secretase substrates, a number of which we validated in a cell culture system. The vast majority were of type I transmembrane topology, although one was type II and three were GPI-linked proteins. Intriguingly, a preponderance of these proteins are involved in contact-dependent intercellular communication or serve as receptors and have recognized roles in the nervous system and other organs. No consistent sequence motif predicting BACE1 cleavage was identified in substrates versus non-substrates. These findings expand our understanding of the proteins and cellular processes that BACE1 may regulate, and suggest possible mechanisms of toxicity arising from chronic BACE1 inhibition

    Morphological and Behavioral Changes in the Pathogenesis of a Novel Mouse Model of Communicating Hydrocephalus

    Get PDF
    The Ro1 model of hydrocephalus represents an excellent model for studying the pathogenesis of hydrocephalus due to its complete penetrance and inducibility, enabling the investigation of the earliest cellular and histological changes in hydrocephalus prior to overt pathology. Hematoxylin and eosin staining, immunofluorescence and electron microscopy were used to characterize the histopathological events of hydrocephalus in this model. Additionally, a broad battery of behavioral tests was used to investigate behavioral changes in the Ro1 model of hydrocephalus. The earliest histological changes observed in this model were ventriculomegaly and disorganization of the ependymal lining of the aqueduct of Sylvius, which occurred concomitantly. Ventriculomegaly led to thinning of the ependyma, which was associated with periventricular edema and areas of the ventricular wall void of cilia and microvilli. Ependymal denudation was subsequent to severe ventriculomegaly, suggesting that it is an effect, rather than a cause, of hydrocephalus in the Ro1 model. Additionally, there was no closure of the aqueduct of Sylvius or any blockages within the ventricular system, even with severe ventriculomegaly, suggesting that the Ro1 model represents a model of communicating hydrocephalus. Interestingly, even with severe ventriculomegaly, there were no behavioral changes, suggesting that the brain is able to compensate for the structural changes that occur in the pathogenesis of hydrocephalus if the disorder progresses at a sufficiently slow rate

    Knowledge translation research in population health: establishing a collaborative research agenda

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Despite the increasing mobilization of researchers and funding organizations around knowledge translation (KT) in Canada and elsewhere, many questions have been only partially answered, particularly in the field of population health. This article presents the results of a systematic process to draw out possible avenues of collaboration for researchers, practitioners and decision-makers who work in the area of KT. The main objective was to establish a research agenda on knowledge translation in population health.</p> <p>Methods</p> <p>Using the Concept Mapping approach, the research team wanted to identify priority themes for the development of research on KT in population health. Mapping is based on multivariate statistical analyses (multidimensional scaling and hierarchical cluster analysis) in which statements produced during a brainstorming session are grouped in weighted clusters. The final maps are a visual representation of the priority themes of research on KT. Especially designed for facilitating consensus in the understanding and organization of various concepts, the Concept Mapping method proved suitable for achieving this objective.</p> <p>Results</p> <p>The maps were produced by 19 participants from university settings, and from institutions within the health and social services network. Three main perspectives emerge from this operation: (1) The evaluation of the effectiveness of KT efforts is one of the main research priorities; (2) The importance of taking into consideration user contexts in any KT effort; (3) The challenges related to sharing power for decision-making and action-taking among various stakeholder groups. These perspectives open up avenues of collaboration for stakeholders who are involved in research on KT. Besides these three main perspectives, the concept maps reveal three other trends which should be emphasized.</p> <p>Conclusion</p> <p>The Concept Mapping process reported in this article aimed to provoke collective reflection on the research questions that should be studied, in order to foster coherence in research activities in the field of population health. Based on this, it is appropriate to continue to support the development of research projects in KT and the formation of research teams in this field. Research on KT must lead to concrete outcomes within communities that are interested in the question.</p
    corecore