50 research outputs found

    The cDNA-deduced primary structure of human sex hormone-binding globulin and location of its steroid-binding domain

    Get PDF
    AbstractWe have sequenced a cDNA for sex hormone-binding globulin (SHBG) isolated from a phage λgt 11 human liver cDNA library. The library was screened with a radiolabeled rat androgen-binding protein (ABP) cDNA, and the abundance of SHBG cDNAs was 1 in 750 000 plaques examined. The largest human SHBG cDNA (1194 base-pairs) contained a reading frame for 381 amino acids. This comprised 8 amino acids of a signal peptide followed by 373 residues starting with the known NH2-terminal sequence of human SHBG, and ending with a termination codon. The predicted polypeptide Mr of SHBG is 40 509, and sites of attachment of one O-linked (residue 7) and two N-linked oligosaccharide (residues 351 and 367) chains were identified. Purified SHBG was photoaffinity-labeled with Δ6-[3H]testosterone and cleaved with trypsin. The labeled tryptic fragment was isolated by reverse-phase HPLC, and its NH2-terminal sequence was determined. The results suggest that a portion of the steroid-binding domain of SHBG is located between residue 296 and the 35 predominantly hydrophilic residues at the C-terminus of the protein

    iNOS activity is critical for the clearance of Burkholderia mallei from infected RAW 264.7 murine macrophages

    Get PDF
    Burkholderia mallei is a facultative intracellular pathogen that can cause fatal disease in animals and humans. To better understand the role of phagocytic cells in the control of infections caused by this organism, studies were initiated to examine the interactions of B. mallei with RAW 264.7 murine macrophages. Utilizing modified kanamycin-protection assays, B. mallei was shown to survive and replicate in RAW 264.7 cells infected at multiplicities of infection (moi) of ≤ 1. In contrast, the organism was efficiently cleared by the macrophages when infected at an moi of 10. Interestingly, studies demonstrated that the monolayers only produced high levels of TNF-α, IL-6, IL-10, GM-CSF, RANTES and IFN-β when infected at an moi of 10. In addition, nitric oxide assays and inducible nitric oxide synthase (iNOS) immunoblot analyses revealed a strong correlation between iNOS activity and clearance of B. mallei from RAW 264.7 cells. Furthermore, treatment of activated macrophages with the iNOS inhibitor, aminoguanidine, inhibited clearance of B. mallei from infected monolayers. Based upon these results, it appears that moi significantly influence the outcome of interactions between B. mallei and murine macrophages and that iNOS activity is critical for the clearance of B. mallei from activated RAW 264.7 cells

    Increased beta adrenoceptor activation overcomes conditioned olfactory learning deficits induced by serotonergic depletion

    No full text
    It was hypothesized that 5-HT2 receptors in the olfactory bulb prime the bulbar response to a beta adrenoceptor mediated unconditioned stimulus (UCS) during odor preference learning in 1-week-old rat pups. The ability of 4 mg/kg of isoproterenol + stroking and 6 mg/kg of isoproterenol + no stroking to induce normal odor preference learning in pups depleted of bulbar 5-HT in the present study supports the hypothesis. The inverted-U curve relation between UCS strength and learning also appears to occur within the bulb

    The neurobiology of infant maternal odor learning

    Get PDF
    Infant rats must learn to identify their mother's diet-dependent odor. Once learned, maternal odor controls pups' approach to the mother, their social behavior and nipple attachment. Here we present a review of the research from four different laboratories, which suggests that neural and behavioral responses to the natural maternal odor and neonatal learned odors are similar. Together, these data indicate that pups have a unique learning circuit relying on the olfactory bulb for neural plasticity and on the hyperfunctioning noradrenergic locus coeruleus flooding the olfactory bulb with norepinephrine to support the neural changes. Another important factor making this system unique is the inability of the amygdala to become incorporated into the infant learning circuit. Thus, infant rats appear to be primed in early life to learn odors that will evoke approach responses supporting attachment to the caregiver

    Regularities in the E. coli promoters composition in connection with the DNA strands interaction and promoter activity

    No full text
    The energy of interaction between DNA strands in promoters is of great functional importance. Visualization of the energy of DNA strands distribution in promoter sequences was achieved. The separation of promoters in groups by their energetic properties enables evaluation of the dependence of promoter strength on the energetic properties. The analysis of groups (clusters) of promoters distributed by the energy of DNA strands interaction in −55, −35, −10 and +6 sequences indicates their connection with the transcriptional activity
    corecore