438 research outputs found

    Remarks on probability theory and TMJ diagnosis

    Full text link
    On the basis of the classic concepts of events and probability theory, this article analyzes some recently introduced diagnostic probability concepts as they pertain to temporomandibular joint (TMJ) diseases and disorders.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/74644/1/j.1365-2842.1992.tb01486.x.pd

    Global effects of local sound-speed perturbations in the Sun: A theoretical study

    Full text link
    We study the effect of localized sound-speed perturbations on global mode frequencies by applying techniques of global helioseismology on numerical simulations of the solar acoustic wave field. Extending the method of realization noise subtraction (e.g. Hanasoge et al. 2007) to global modes and exploiting the luxury of full spherical coverage, we are able to achieve very highly resolved frequency differences that are used to study sensitivities and the signatures of the thermal asphericities. We find that (1) global modes are almost twice as sensitive to sound-speed perturbations at the bottom of the convection zone as in comparison to anomalies well in the radiative interior (r0.55Rr\lesssim0.55 R_\odot), (2) the mm-degeneracy is lifted ever so slightly, as seen in the aa coefficients, and (3) modes that propagate in the vicinity of the perturbations show small amplitude shifts (0.5\sim 0.5%).Comment: Submitted to Solar Physic

    Prospects for asteroseismology

    Full text link
    The observational basis for asteroseismology is being dramatically strengthened, through more than two years of data from the CoRoT satellite, the flood of data coming from the Kepler mission and, in the slightly longer term, from dedicated ground-based facilities. Our ability to utilize these data depends on further development of techniques for basic data analysis, as well as on an improved understanding of the relation between the observed frequencies and the underlying properties of the stars. Also, stellar modelling must be further developed, to match the increasing diagnostic potential of the data. Here we discuss some aspects of data interpretation and modelling, focussing on the important case of stars with solar-like oscillations.Comment: Proc. HELAS Workshop on 'Synergies between solar and stellar modelling', eds M. Marconi, D. Cardini & M. P. Di Mauro, Astrophys. Space Sci., in the press Revision: correcting abscissa labels on Figs 1 and

    Measurement of quasi-elastic 12C(p,2p) scattering at high momentum transfer

    Full text link
    We measured the high-momentum quasi-elastic 12C(p,2p) reaction (at center of mass angle near 90 degrees) for 6 and 7.5 GeV/c incident protons. The three-momentum components of both final state protons were measured and the missing energy and momentum of the target proton in the nucleus were determined. The validity of the quasi-elastic picture was verified up to Fermi momenta of about 450 MeV/c, where it might be questionable. Transverse and longitudinal Fermi momentum distributions of the target proton were measured and compared to independent particle models which do not reproduce the large momentum tails. We also observed that the transverse Fermi distribution gets wider as the longitudinal component increases in the beam direction, in contrast to a simple Fermi gas model.Comment: 4 pages including 3 figure

    Ab initio study of the beta$-tin->Imma->sh phase transitions in silicon and germanium

    Full text link
    We have investigated the structural sequence of the high-pressure phases of silicon and germanium. We have focussed on the cd->beta-tin->Imma->sh phase transitions. We have used the plane-wave pseudopotential approach to the density-functional theory implemented within the Vienna ab-initio simulation package (VASP). We have determined the equilibrium properties of each structure and the values of the critical parameters including a hysteresis effect at the phase transitions. The order of the phase transitions has been obtained alternatively from the pressure dependence of the enthalpy and of the internal structure parameters. The commonly used tangent construction is shown to be very unreliable. Our calculations identify a first-order phase transition from the cd to the beta-tin and from the Imma to the sh phase, and they indicate the possibility of a second-order phase-transition from the beta-tin to the Imma phase. Finally, we have derived the enthalpy barriers between the phases.Comment: 12 pages, 16 figure

    Stochastic excitation of acoustic modes in stars

    Full text link
    For more than ten years, solar-like oscillations have been detected and frequencies measured for a growing number of stars with various characteristics (e.g. different evolutionary stages, effective temperatures, gravities, metal abundances ...). Excitation of such oscillations is attributed to turbulent convection and takes place in the uppermost part of the convective envelope. Since the pioneering work of Goldreich & Keely (1977), more sophisticated theoretical models of stochastic excitation were developed, which differ from each other both by the way turbulent convection is modeled and by the assumed sources of excitation. We review here these different models and their underlying approximations and assumptions. We emphasize how the computed mode excitation rates crucially depend on the way turbulent convection is described but also on the stratification and the metal abundance of the upper layers of the star. In turn we will show how the seismic measurements collected so far allow us to infer properties of turbulent convection in stars.Comment: Notes associated with a lecture given during the fall school organized by the CNRS and held in St-Flour (France) 20-24 October 2008 ; 39 pages ; 11 figure

    Nurture, nature and some very dubious social skills: An interpretative phenomenological analysis of talent identification practices in elite English youth soccer

    Get PDF
    This paper reports qualitative findings regarding the concepts and practices utilised in talent identification (TI) among professional coaches working in English youth soccer. Using interpretative phenomenological analysis, detailed interviews with seven such coaches are explored, with a view to elucidating the links between understanding, practice, experience and professional context. Findings reveal three superordinate themes, relating to (1) a primarily ‘nurtured’ and trainable understanding of the broad concept of talent itself, (2) an ostensibly contradictory model of semi-static player psychology, and (3) a highly selective mechanism for separating evidence for ‘mental strength’ and ‘social skills’. It is contended that these findings underscore a case for more thorough interrogation of the real worlds inhabited by coaches, such that ideas about ‘good practice’ in TI might be more effectively reconciled with grounded knowledge of the practical everyday necessities of being a coach

    Organic matter chemistry controls greenhouse gas emissions from permafrost peatlands

    Get PDF
    Large tracts of arctic and subarctic peatlands are underlain by permafrost. These peatlands store large quantities of carbon (C), and are currently under severe threat from climate change. The aim of this study was to determine the size and organic chemistry of the easily degradable C pool in permafrost peatlands and link the functional organic chemistry to temperature and moisture controls of greenhouse gas emissions. First, we used a combination of field measurements and laboratory experiments to assess the influence of increased temperature and flooding on CO₂ and CH₄ emissions from sixteen permafrost peatlands in subarctic Sweden and Canada. Second, we determined the variation in organic matter chemistry and the associated microbial community composition of the peat active layer, with depth using quantitative ¹³C solid-state NMR and molecular biomarkers respectively. We demonstrate that the peat organic chemistry strongly controls CO₂ release from peat and that ca. 35 and 26% of the peat organic matter, at the Swedish and Canadian peatlands sites, respectively, is easily degradable by heterotrophic microorganisms. In contrast to CO₂, CH₄ emissions were decoupled from peat functional organic chemistry. We show a strong relationship between the microbial community structure and the peat organic chemistry suggesting that substrate type and abundance is an important driver of microbial composition in sub-arctic peatlands. Despite considerable variation in peat chemistry and microbial community composition with depth the temperature sensitivity was comparable throughout the active layer. Our study shows that functional organic chemistry controls both soil respiration rates and the composition of the microbial community. Furthermore, if these peatlands collapse and flood on thawing, they are unlikely to become large emitters of CH₄ without additional input of labile substrates
    corecore