3,728 research outputs found

    Structural ambiguity of the Chinese version of the hospital anxiety and depression scale in patients with coronary heart disease

    Get PDF
    Background The Hospital Anxiety and Depression Scale (HADS) is a widely used screening tool designed as a case detector for clinically relevant anxiety and depression. Recent studies of the HADS in coronary heart disease (CHD) patients in European countries suggest it comprises three, rather than two, underlying sub-scale dimensions. The factor structure of the Chinese version of the HADS was evaluated in patients with CHD in mainland China. Methods Confirmatory factor analysis (CFA) was conducted on self-report HADS forms from 154 Chinese CHD patients. Results Little difference was observed in model fit between best performing three-factor and two-factor models. Conclusion The current observations are inconsistent with recent studies highlighting a dominant underlying tri-dimensional structure to the HADS in CHD patients. The Chinese version of the HADS may perform differently to European language versions of the instrument in patients with CHD

    Scattering in a Simple 2-d Lattice Model

    Full text link
    L\"uscher has suggested a method to determine phase shifts from the finite volume dependence of the two-particle energy spectrum. We apply this to two models in d=2: (a) the Ising model, (b) a system of two Ising fields with different mass and coupled through a 3-point term, both considered in the symmetric phase. The Monte Carlo simulation makes use of the cluster updating and reduced variance operator techniques. For the Ising system we study in particular O(a2a^2) effects in the phase shift of the 2-particle scattering process.Comment: 4 p + 2 PS-figures, UNIGRAZ-UTP-21-10-9

    Thermal expansion and pressure effect in MnWO4

    Full text link
    MnWO4 has attracted attention because of its ferroelectric property induced by frustrated helical spin order. Strong spin-lattice interaction is necessary to explain ferroelectricity associated with this type of magnetic order.We have conducted thermal expansion measurements along the a, b, c axes revealing the existence of strong anisotropic lattice anomalies at T1=7.8 K, the temperature of the magnetic lock-in transition into a commensurate low-temperature (reentrant paraelectric) phase. The effect of hydrostatic pressure up to 1.8 GPa on the FE phase is investigated by measuring the dielectric constant and the FE polarization. The low- temperature commensurate and paraelectric phase is stabilized and the stability range of the ferroelectric phase is diminished under pressure.Comment: 2 pages, 3 figures. SCES conference proceedings, houston, TX, 2007. to be published in Physica

    Groundwater drought forecasting using lumped conceptual models

    Get PDF
    For fractured aquifers, such as the Cretaceous Chalk, autocorrelation in SGI (Bloomfield & Marchant, 2013) has been inferred to be primarily related to autocorrelation in the recharge time series, while in granular aquifers, such as the Permo– Triassic sandstones, autocorrelation in SGI is inferred to be primarily a function of intrinsic saturated flow and storage properties of aquife

    Mixing and oscillations of neutral particles in Quantum Field Theory

    Full text link
    We study the mixing of neutral particles in Quantum Field Theory: neutral boson field and Majorana field are treated in the case of mixing among two generations. We derive the orthogonality of flavor and mass representations and show how to consistently calculate oscillation formulas, which agree with previous results for charged fields and exhibit corrections with respect to the usual quantum mechanical expressions.Comment: 8 pages, revised versio

    Study of heterogeneous nucleation of eutectic Si in high-purity Al-Si alloys with Sr addition

    Get PDF
    The official published version can be accessed from the link below - Copyright @ 2010 The Minerals, Metals & Materials Society and ASM InternationalAl-5 wt pct Si master-alloys with controlled Sr and/or P addition/s were produced using super purity Al 99.99 wt pct and Si 99.999 wt pct materials in an arc melter. The master-alloy was melt-spun resulting in the production of thin ribbons. The Al matrix of the ribbons contained entrained Al-Si eutectic droplets that were subsequently investigated. Differential scanning calorimetry, thermodynamic calculations, and transmission electron microscopy techniques were employed to examine the effect of the Sr and P additions on eutectic undercoolings and nucleation phenomenon. Results indicate that, unlike P, Sr does not promote nucleation. Increasing Sr additions depressed the eutectic nucleation temperature. This may be a result of the formation of a Sr phase that could consume or detrimentally affect potent AlP nucleation sites.This work is financially supported by the Higher Education Commission of Pakistan and managerially supported from the OAD

    High quality GaMnAs films grown with As dimers

    Full text link
    We demonstrate that GaMnAs films grown with As2 have excellent structural, electrical and magnetic properties, comparable or better than similar films grown with As4. Using As2, a Curie temperature of 112K has been achieved, which is slightly higher than the best reported to date. More significantly, films showing metallic conduction have been obtained over a much wider range of Mn concentrations (from 1.5% to 8%) than has been reported for films grown with As4. The improved properties of the films grown with As2 are related to the lower concentration of antisite defects at the low growth temperatures employed.Comment: 8 pages, accepted for publication in J. Crystal Growt

    Reconstruction of multi-decadal groundwater level time-series using a lumped conceptual model

    Get PDF
    Multi-decadal groundwater level records, which provide information about long-term variability and trends, are relatively rare. Whilst a number of studies have sought to reconstruct river flow records, there have been few attempts to reconstruct groundwater level time-series over a number of decades. Using long rainfall and temperature records, we developed and applied a methodology to do this using a lumped conceptual model. We applied the model to six sites in the UK, in four different aquifers: Chalk, limestone, sandstone and Greensand. Acceptable models of observed monthly groundwater levels were generated at four of the sites, with maximum Nash–Sutcliffe Efficiency scores of between 0.84 and 0.93 over the calibration and evaluation periods, respectively. These four models were then used to reconstruct the monthly groundwater level time-series over approximately 60 years back to 1910. Uncertainty in the simulated levels associated with model parameters was assessed using the Generalized Likelihood Uncertainty Estimation method. Known historical droughts and wet period in the UK are clearly identifiable in the reconstructed levels, which were compared using the Standardized Groundwater Level Index. Such reconstructed records provide additional information with which to improve estimates of the frequency, severity and duration of groundwater level extremes and their spatial coherence, which for example is important for the assessment of the yield of boreholes during drought period

    Impurity and interface bound states in dx2y2+idxyd_{x^2-y^2}+id_{xy} and px+ipyp_x+ip_y superconductors

    Get PDF
    Motivated by recent discoveries of novel superconductors such as Nax_xCoO2y_2\cdot yH2_2O and Sr2_2RuO4_4, we analysize features of quasi-particle scattering due to impurities and interfaces for possible gapful dx2y2+idxyd_{x^2-y^2}+id_{xy} and px+ipyp_x+ip_y Cooper pairing. A bound state appears near a local impurity, and a band of bound states form near an interface. We obtained analytically the bound state energy, and calculated the space and energy dependent local density of states resolvable by high-resolution scanning tunnelling microscopy. For comparison we also sketch results of impurity and surface states if the pairing is nodal p- or d-wave.Comment: 4 pages, 4 figure

    A MEMS viscometer for unadulterated human blood

    Get PDF
    The design and theoretical modelling of an oscillating micro-mechanical-viscometer designed for the measurement of whole unadulterated human blood, is described. The proposed device utilises the dependence of the squeeze-film damping ratio on properties of the surrounding fluid to measure fluid viscosity using an oscillating plate structure. The optimum geometrical configuration for the device structure has been investigated and a methodology for defining the optimum configuration of the micro-mechanical sensor identified. This is then applied to calculate the predicted noise equivalent viscosity change . It was found that the device performance is limited by electronic noise within the detection circuitry rather than thermal mechanical noise. An electronic noise limited measurement resolution of , is predicted for measurement over a shear range of , at a measurement bandwidth of . The linearity of response of the micro-mechanical-viscometer is considered and the device is predicted to provide a linear measurement response
    corecore