186 research outputs found
Overcoming uncertainty and barriers to adoption of Blue-Green Infrastructure for urban flood risk management: Uncertainties and barriers to adoption of BGI
Blue-Green Infrastructure (BGI) and Sustainable Drainage Systems (SuDS) are increasingly recognised as vital components of urban flood risk management. However, uncertainty regarding their hydrologic performance and lack of confidence concerning their public acceptability create concerns and challenges that limit their widespread adoption. This paper investigates barriers to implementation of BGI in Portland, Oregon, using the Relevant Dominant Uncertainty (RDU) approach. Two types of RDU are identified: scientific RDU’s related to physical processes that affect infrastructure performance and service provision, and socio-political RDU’s that reflect a lack of confidence in socio-political structures and public preferences for BGI. We find that socio-political RDU’s currently exert the strongest negative influences on BGI decision making in Portland. We conclude that identification and management of both biophysical and socio-political uncertainties are essential to broadening the implementation of BGI and sustainable urban flood risk management solutions that are practical, scientifically sound, and supported by local stakeholders
Recognising barriers to implementation of Blue-Green infrastructure: a Newcastle case study
There is a recognised need for a fundamental change in how the UK manages urban water and flood risk in response to increasingly frequent rainfall events coupled with planned urban expansion. Approaches centred on ‘living with and making space for water’ are increasingly adopted internationally. Nonetheless, widespread implementation of Blue-Green infrastructure (BGI) is currently hampered by barriers that impede uptake and innovation. We investigate the barriers to implementation of BGI in Newcastle, UK, through a series of semi-structured interviews with professional stakeholders. We identify and categorise 17 types of barrier and identify targeted strategies to overcome the dominant barriers. We recommend promotion of BGI’s capacity to meet the objectives of multiple organisations and Local Authority departments, in addition to managing urban water. We conclude that strong business cases, supported by monetised evidence of benefits, and collaborative, inter-agency working could advance implementation of BGI within the current flood risk management legislation
Crossover from 2-dimensional to 1-dimensional collective pinning in NbSe3
We have fabricated NbSe structures with widths comparable to the
Fukuyama-Lee-Rice phase-coherence length. For samples already in the
2-dimensional pinning limit, we observe a crossover from 2-dimensional to
1-dimensional collective pinning when the crystal width is less than 1.6
m, corresponding to the phase-coherence length in this direction. Our
results show that surface pinning is negligible in our samples, and provide a
means to probe the dynamics of single domains giving access to a new regime in
charge-density wave physics.Comment: 4 pages, 2 figures, and 1 table. Accepted for publication in Physical
Review
Numerical Solutions of ideal two-fluid equations very closed to the event horizon of Schwarzschild black hole
The 3+1 formalism of Thorne, Price and Macdonald has been used to derive the
linear two-fluid equations describing transverse and longitudinal waves
propagating in the two-fluid ideal collisionless plasmas surrounding a
Schwarzschild black hole. The plasma is assumed to be falling in radial
direction toward the event horizon. The relativistic two-fluid equations have
been reformulate, in analogy with the special relativistic formulation as
explained in an earlier paper, to take account of relativistic effects due to
the event horizon. Here a WKB approximation is used to derive the local
dispersion relation for these waves and solved numerically for the wave number
k.Comment: 16 pages, 15 figures. arXiv admin note: text overlap with
arXiv:0902.3766, arXiv:0807.459
Nonorientable spacetime tunneling
Misner space is generalized to have the nonorientable topology of a Klein
bottle, and it is shown that in a classical spacetime with multiply connected
space slices having such a topology, closed timelike curves are formed.
Different regions on the Klein bottle surface can be distinguished which are
separated by apparent horizons fixed at particular values of the two angular
variables that eneter the metric. Around the throat of this tunnel (which we
denote a Klein bottlehole), the position of these horizons dictates an ordinary
and exotic matter distribution such that, in addition to the known diverging
lensing action of wormholes, a converging lensing action is also present at the
mouths. Associated with this matter distribution, the accelerating version of
this Klein bottlehole shows four distinct chronology horizons, each with its
own nonchronal region. A calculation of the quantum vacuum fluctuations
performed by using the regularized two-point Hadamard function shows that each
chronology horizon nests a set of polarized hypersurfaces where the
renormalized momentum-energy tensor diverges. This quantum instability can be
prevented if we take the accelerating Klein bottlehole to be a generalization
of a modified Misner space in which the period of the closed spatial direction
is time-dependent. In this case, the nonchronal regions and closed timelike
curves cannot exceed a minimum size of the order the Planck scale.Comment: 11 pages, RevTex, Accepted in Phys. Rev.
Anisotropic dark energy stars
A model of compact object coupled to inhomogeneous anisotropic dark energy is
studied. It is assumed a variable dark energy that suffers a phase transition
at a critical density. The anisotropic Lambda-Tolman-Oppenheimer-Volkoff
equations are integrated to know the structure of these objects. The anisotropy
is concentrated on a thin shell where the phase transition takes place, while
the rest of the star remains isotropic. The family of solutions obtained
depends on the coupling parameter between the dark energy and the fermion
matter. The solutions share several features in common with the gravastar
model. There is a critical coupling parameter that gives non-singular black
hole solutions. The mass-radius relations are studied as well as the internal
structure of the compact objects. The hydrodynamic stability of the models is
analyzed using a standard test from the mass-radius relation. For each
permissible value of the coupling parameter there is a maximum mass, so the
existence of black holes is unavoidable within this model.Comment: 12 pages, 6 figures, final manuscript, Accepted for publication in
Astrophysics & Space Scienc
Expanding running coupling effects in the hard Pomeron
We study QCD hard processes at scales of order k^2 > Lambda^2 in the limit in
which the beta-function coefficient - b is taken to be small, but alphas(k) is
kept fixed. The (nonperturbative) Pomeron is exponentially suppressed in this
limit, making it possible to define purely perturbative high-energy Green's
functions. The hard Pomeron exponent acquires diffusion and running coupling
corrections which can be expanded in the b parameter and turn out to be
dependent on the effective coupling b alphas^2 Y. We provide a general setup
for this b-expansion and we calculate the first few terms both analytically and
numerically.Comment: 36 pages, 15 figures, additional references adde
Influence of thermal fluctuations on quantum phase transitions in one-dimensional disordered systems: Charge density waves and Luttinger liquids
The low temperature phase diagram of 1D weakly disordered quantum systems
like charge or spin density waves and Luttinger liquids is studied by a
\emph{full finite temperature} renormalization group (RG) calculation. For
vanishing quantum fluctuations this approach is amended by an \emph{exact}
solution in the case of strong disorder and by a mapping onto the \emph{Burgers
equation with noise} in the case of weak disorder, respectively. At \emph{zero}
temperature we reproduce the quantum phase transition between a pinned
(localized) and an unpinned (delocalized) phase for weak and strong quantum
fluctuations, respectively, as found previously by Fukuyama or Giamarchi and
Schulz.
At \emph{finite} temperatures the localization transition is suppressed: the
random potential is wiped out by thermal fluctuations on length scales larger
than the thermal de Broglie wave length of the phason excitations. The
existence of a zero temperature transition is reflected in a rich cross-over
phase diagram of the correlation functions. In particular we find four
different scaling regions: a \emph{classical disordered}, a \emph{quantum
disordered}, a \emph{quantum critical} and a \emph{thermal} region. The results
can be transferred directly to the discussion of the influence of disorder in
superfluids. Finally we extend the RG calculation to the treatment of a
commensurate lattice potential. Applications to related systems are discussed
as well.Comment: 19 pages, 7 figure
General Relativistic MHD Jets
Magnetic fields connecting the immediate environs of rotating black holes to
large distances appear to be the most promising mechanism for launching
relativistic jets, an idea first developed by Blandford and Znajek in the
mid-1970s. To enable an understanding of this process, we provide a brief
introduction to dynamics and electromagnetism in the spacetime near black
holes. We then present a brief summary of the classical Blandford-Znajek
mechanism and its conceptual foundations. Recently, it has become possible to
study these effects in much greater detail using numerical simulation. After
discussing which aspects of the problem can be handled well by numerical means
and which aspects remain beyond the grasp of such methods, we summarize their
results so far. Simulations have confirmed that processes akin to the classical
Blandford-Znajek mechanism can launch powerful electromagnetically-dominated
jets, and have shown how the jet luminosity can be related to black hole spin
and concurrent accretion rate. However, they have also shown that the
luminosity and variability of jets can depend strongly on magnetic field
geometry. We close with a discussion of several important open questions.Comment: 21 pages, 2 figures, To appear in Belloni, T. (ed.): The Jet Paradigm
- From Microquasars to Quasars, Lect. Notes Phys. 794 (2009
Learning and Action Alliance framework to facilitate stakeholder collaboration and social learning in urban flood risk management
Flood and water management governance may be enhanced through partnership working, intra- and cross-organisational collaborations, and wide stakeholder participation. Nonetheless, barriers associated with ineffective communication, fragmented responsibilities and ‘siloed thinking’ restrict open dialogue and discussion. The Learning and Action Alliance (LAA) framework may help overcome these barriers by enabling effective engagement through social learning, and facilitating targeted actions needed to deliver innovative solutions to environmental problems. By increasing the adaptive capacity of decision-makers and participants, social learning through LAAs may lead to concerted action and sustained processes of behavioural change. In this paper, we evaluate the LAA framework as a catalyst for change that supports collaborative working and facilitates transition to more sustainable flood risk management. We use a case study in Newcastle-upon-Tyne, UK, to demonstrate how the LAA framework brought together disparate City stakeholders to co-produce new knowledge, negotiate innovative actions and, ultimately, work towards implementing a new vision for sustainable urban flood risk management. The shared vision of Newcastle as a ‘Blue-Green City’ that emerged is founded on a strong platform for social learning which increased organisations’ and individuals’ capacities to manage differences in perspectives and behaviours, reframe knowledge, and make collective decisions based on negotiation and conflict resolution. Broad recommendations based on lessons learned from the Newcastle LAA are presented to aid other cities and regions in establishing and running social learning platforms
- …