10 research outputs found

    A time-of-flight correction procedure for fast-timing data of recoils with varying implantation positions at a spectrometer focal plane

    Get PDF
    Fast-timing measurements at the focal plane of a separator can suffer from poor timing resolution. This is due to the variations in time-of-flight (ToF) for photons travelling to a given detector, which arise from the changes in the implantation positions of the recoil nuclei emitting the γ rays of interest. In order to minimise these effects on timing measurements, a procedure is presented that improves fast-timing data by performing ToF corrections on an event-by-event basis. This method was used to correct data collected with an array of eight LaBr3 detectors, which detected γ rays from spatially distributed 138Gd recoil-implants at the focal plane of the Recoil-Ion-Transport-Unit (RITU) spectrometer. The Generalised Centroid Difference (GCD) method was used to extract a lifetime from data in conjunction with a new procedure to calibrate the time walk. The lifetime of the first 2+ state in 138Gd, populated by the decay of the Kπ = 8− isomeric state, was measured to be 229(24) ps using the ToF-corrected data, which is consistent within three standard deviations to the literature value. The results together with Monte-Carlo simulations show that the ToF correction procedure reduced the uncertainty in the measured lifetimes by 3 % in the case of the spatially distributed nuclei at the focal plane of RITU. However, ∼12 % has been estimated for a similar experiment when using a larger focal plane i.e. the Super-FRS at the FAIR facility.peerReviewe

    Collective properties of neutron-deficient Nd isotopes: Lifetime measurements of the yrast states in 136^{136}Nd

    No full text
    International audienceLifetimes of the low-energy levels in Nd136, populated in the reaction Te124(O16,4n), were measured with the ROSPHERE array at the Horia Hulubei National Institute for Physics and Nuclear Engineering (IFIN-HH), Bucharest-Magurele. The data were analyzed using the recoil distance Doppler shift method, and, in the cases where lifetimes were τ⩽1 ps, Doppler attenuation effects were taken into account. The deduced electromagnetic transition probabilities are discussed in the framework of the five-dimensional collective Hamiltonian (5DCH) theoretical model implemented with the D1S Gogny force, and detailed systematics of several observables in the even-even Nd isotopic chain are presented that highlight the transitional character of the neutron-deficient Nd isotopes. The 5DCH predictions are in overall good agreement with the present experimental results

    Reaction Channel selection techniques and γ\gamma-γ\gamma fast-timing spectroscopy using the ν\nu-Ball Spectrometer

    No full text
    International audienceThe reaction of a pulsed 18O beam on a self-supporting and gold-backed isotopically-enriched 164Dy target of thickness 6.3 mg/cm2 at separate primary beam energies of 71, 76 and 80 MeV was studied at the accelerator at the ALTO facility of the IPN Orsay. The γ rays produced were detected using the newly-constructed ν-Ball spectrometer which comprised of HPGe and LaBr3(Ce) detectors. This conference paper describes the methodology and effectiveness of multiplicity/sum-energy gating, for channel selection between fusion evaporation events and lower multiplicity/energy events from inelastic nuclear scattering and Coulomb excitation of the target, and from two-neutron transfer reactions to 166Dy

    Half-life measurements in 164,166Dy^{164,166}\mathrm{Dy} using γ-γ{\gamma}\text{-}{\gamma} fast-timing spectroscopy with the ν{\nu}-Ball spectrometer

    Get PDF
    International audienceWe report on the measurement of lifetimes of excited states in the near-mid-shell nuclei Dy164,166 using the gamma-ray coincidence fast-timing method. The nuclei of interest were populated using reactions between an O18 beam and a gold-backed isotopically enriched Dy164 target of thickness 6.3mg/cm2 at primary beam energies of 71, 76, and 80 MeV from the IPN-Orsay laboratory, France. Excited states were populated in Dy164, Dy166, and W178,179 following Coulomb excitation, inelastic nuclear scattering, two-neutron transfer, and fusion-evaporation reaction channels respectively. Gamma rays from excited states were measured using the ν-Ball high-purity germanium (HPGe)-LaBr3 hybrid γ-ray spectrometer with the excited state lifetimes extracted using the fast-timing coincidence method using HPGe-gated LaBr3-LaBr3 triple coincident events. The lifetime of the first Iπ=2+ excited state in Dy166 was used to determine the transition quadrupole deformation of this neutron-rich nucleus for the first time. The experimental methodology was validated by showing consistency with previously determined excited state lifetimes in Dy164. The half-lives of the yrast 2+ states in Dy164 and Dy166 were 2.35(6) and 2.3(2) ns, respectively, corresponding to transition quadrupole moment values of Q0=7.58(9) and 7.5(4) eb, respectively. The lifetime of the yrast 2+ state in Dy166 is consistent with a quenching of nuclear quadrupole deformation at β≈0.35 as the N=104 mid-shell is approached

    Metastable States of 92,94Se^{92,94}\mathrm{Se}: Identification of an Oblate KK Isomer of 94Se^{94}\mathrm{Se} and the Ground-State Shape Transition between N=58 and 60N=58\text{ }\text{and}\text{ }60

    No full text
    International audienceHere we present new information on the shape evolution of the very neutron-rich Se92,94 nuclei from an isomer-decay spectroscopy experiment at the Radioactive Isotope Beam Factory at RIKEN. High-resolution germanium detectors were used to identify delayed γ rays emitted following the decay of their isomers. New transitions are reported extending the previously known level schemes. The isomeric levels are interpreted as originating from high-K quasineutron states with an oblate deformation of β∼0.25, with the high-K state in Se94 being metastable and K hindered. Following this, Se94 is the lowest-mass neutron-rich nucleus known to date with such a substantial K hindrance. Furthermore, it is the first observation of an oblate K isomer in a deformed nucleus. This opens up the possibility for a new region of K isomers at low Z and at oblate deformation, involving the same neutron orbitals as the prolate orbitals within the classic Z∼72 deformed hafnium region. From an interpretation of the level scheme guided by theoretical calculations, an oblate deformation is also suggested for the Se6094 ground-state band

    Shape Coexistence at Zero Spin in 64Ni^{64}\mathrm{Ni} Driven by the Monopole Tensor Interaction

    Get PDF
    International audienceThe low-spin structure of the semimagic Ni64 nucleus has been considerably expanded: combining four experiments, several 0+ and 2+ excited states were identified below 4.5 MeV, and their properties established. The Monte Carlo shell model accounts for the results and unveils an unexpectedly complex landscape of coexisting shapes: a prolate 0+ excitation is located at a surprisingly high energy (3463 keV), with a collective 2+ state 286 keV above it, the first such observation in Ni isotopes. The evolution in excitation energy of the prolate minimum across the neutron N=40 subshell gap highlights the impact of the monopole interaction and its variation in strength with N
    corecore