32 research outputs found
Gamma Ray Fresnel lenses - why not?
Fresnel lenses offer the possibility of concentrating the flux of X-rays or
gamma-rays flux falling on a geometric area of many square metres onto a focal
point which need only be a millimetre or so in diameter (and which may even be
very much smaller). They can do so with an efficiency that can approach 100%,
and yet they are easily fabricated and have no special alignment requirements.
Fresnel lenses can offer diffraction-limited angular resolution, even in a
domain where that limit corresponds to less than a micro second of arc.
Given all these highly desirable attributes, it is natural to ask why Fresnel
gamma ray lenses are not already being used, or at least why there is not yet
any mission that plans to use the technology. Possible reasons (apart from the
obvious one that nobody thought of doing so) include the narrow bandwidth of
simple Fresnel lenses, their very long focal length, and the problems of target
finding. It is argued that none of these is a "show stopper" and that this
technique should be seriously considered for nuclear astrophysics.Comment: Presented at "Gamma Wave 2005", Bonifacio, September 2005. To be
published in "Experimental Astronomy
Dynamical modelling of the elliptical galaxy NGC 2974
In this paper we analyse the relations between a previously described oblate
Jaffe model for an ellipsoidal galaxy and the observed quantities for NGC 2974,
and obtain the length and velocity scales for a relevant elliptical galaxy
model. We then derive the finite total mass of the model from these scales, and
finally find a good fit of an isotropic oblate Jaffe model by using the
Gauss-Hermite fit parameters and the observed ellipticity of the galaxy NGC
2974. The model is also used to predict the total luminous mass of NGC 2974,
assuming that the influence of dark matter in this galaxy on the image,
ellipticity and Gauss-Hermite fit parameters of this galaxy is negligible
within the central region, of radius Comment: 7 figure
Chandra HETG X-ray spectra and variability of π Aqr, a γ Cas-type Be star
High-resolution X-ray spectra of π Aqr, a γ Cas-type star, obtained with the Chandra/HETG spectrometer, revealed emission lines of H-like ions of Mg, Si, S, and Fe; a strong, hard continuum; and a lack of He-like ions, indicating the presence of very hot thermal plasma. The X-ray light curve showed significant fluctuations, with coherent variability at a period of about 3400 s in one observation. The hardness ratio was relatively constant except for one observation in which the spectrum was much harder and more absorbed. We interpret the X-ray emission as arising from accretion onto the secondary, which is likely a magnetic white dwarf, an intermediate polar system
The nature of X-rays from young stellar objects in the Orion Nebula cluster—a Chandra HETGS legacy project
The Orion Nebula Cluster (ONC) is the closest site of very young (∼1 Myr) massive star formation The ONC hosts more than 1600 young and X-ray bright stars with masses ranging from ∼0.1–35 M⊙. The Chandra HETGS Orion Legacy Project observed the ONC with the Chandra High Energy Transmission Grating Spectrometer (HETGS) for 2.1 Ms. We describe the spectral extraction and cleaning processes necessary to separate overlapping spectra. We obtained 36 high-resolution spectra, which include a high-brilliance X-ray spectrum of θ1 Ori C with over 100 highly significant X-ray lines. The lines show Doppler broadening between 300 and 400 km s−1. Higher spectral diffraction orders allow us to resolve line components of high Z He-like triplets in θ1 Ori C with unprecedented spectral resolution. Long-term light curves spanning ∼20 yr show all stars to be highly variable, including the massive stars. Spectral fitting with thermal coronal emission line models reveals that most sources show column densities of up to a few times 1022 cm−2 and high coronal temperatures of 10–90 MK. We observe a bifurcation of the high-temperature component where some stars show a high component of 40 MK, while others show above 60 MK, indicating heavy flaring activity. Some lines are resolved with Doppler broadening above our threshold of ∼200 km s−1, up to 500 km s−1. This data set represents the largest collection of HETGS high-resolution X-ray spectra from young pre-main-sequence stars in a single star-forming region to date
FUV and X-ray absorption in the Warm-Hot Intergalactic Medium
The Warm-Hot Intergalactic Medium (WHIM) arises from shock-heated gas
collapsing in large-scale filaments and probably harbours a substantial
fraction of the baryons in the local Universe. Absorption-line measurements in
the ultraviolet (UV) and in the X-ray band currently represent the best method
to study the WHIM at low redshifts. We here describe the physical properties of
the WHIM and the concepts behind WHIM absorption line measurements of H I and
high ions such as O VI, O VII, and O VIII in the far-ultraviolet and X-ray
band. We review results of recent WHIM absorption line studies carried out with
UV and X-ray satellites such as FUSE, HST, Chandra, and XMM-Newton and discuss
their implications for our knowledge of the WHIM.Comment: 26 pages, 9 figures, accepted for publication in Space Science
Reviews, special issue "Clusters of galaxies: beyond the thermal view",
Editor J.S. Kaastra, Chapter 3; work done by an international team at the
International Space Science Institute (ISSI), Bern, organised by J.S.
Kaastra, A.M. Bykov, S. Schindler & J.A.M. Bleeke
Cosmological Applications of Gravitational Lensing
The last decade has seen an enormous increase of activity in the field of
gravitational lensing, mainly driven by improvements of observational
capabilities. I will review the basics of gravitational lens theory, just
enough to understand the rest of this contribution, and will then concentrate
on several of the main applications in cosmology. Cluster lensing, and weak
lensing, will constitute the main part of this review.Comment: 26 pages, including 2 figures (a third figure can be obtained from
the author by request) gziped and uuencoded postscript file; to be published
in Proceedings of the Laredo Advanced Summer School, Sept. 9
Observations of metals in the intra-cluster medium
Because of their deep gravitational potential wells, clusters of galaxies
retain all the metals produced by the stellar populations of the member
galaxies. Most of these metals reside in the hot plasma which dominates the
baryon content of clusters. This makes them excellent laboratories for the
study of the nucleosynthesis and chemical enrichment history of the Universe.
Here we review the history, current possibilities and limitations of the
abundance studies, and the present observational status of X-ray measurements
of the chemical composition of the intra-cluster medium. We summarise the
latest progress in using the abundance patterns in clusters to put constraints
on theoretical models of supernovae and we show how cluster abundances provide
new insights into the star-formation history of the Universe.Comment: 28 pages, 12 figures, accepted for publication in Space Science
Reviews, special issue "Clusters of galaxies: beyond the thermal view",
Editor J.S. Kaastra, Chapter 16; work done by an international team at the
International Space Science Institute (ISSI), Bern, organised by J.S.
Kaastra, A.M. Bykov, S. Schindler & J.A.M. Bleeke
First narrow-band search for continuous gravitational waves from known pulsars in advanced detector data
Spinning neutron stars asymmetric with respect to their rotation axis are potential sources of continuous gravitational waves for ground-based interferometric detectors. In the case of known pulsars a fully coherent search, based on matched filtering, which uses the position and rotational parameters obtained from electromagnetic observations, can be carried out. Matched filtering maximizes the signal-to-noise (SNR) ratio, but a large sensitivity loss is expected in case of even a very small mismatch between the assumed and the true signal parameters. For this reason, narrow-band analysis methods have been developed, allowing a fully coherent search for gravitational waves from known pulsars over a fraction of a hertz and several spin-down values. In this paper we describe a narrow-band search of 11 pulsars using data from Advanced LIGO's first observing run. Although we have found several initial outliers, further studies show no significant evidence for the presence of a gravitational wave signal. Finally, we have placed upper limits on the signal strain amplitude lower than the spin-down limit for 5 of the 11 targets over the bands searched; in the case of J1813-1749 the spin-down limit has been beaten for the first time. For an additional 3 targets, the median upper limit across the search bands is below the spin-down limit. This is the most sensitive narrow-band search for continuous gravitational waves carried out so far. © 2017 American Physical Society
Search for intermediate mass black hole binaries in the first observing run of Advanced LIGO
During their first observational run, the two Advanced LIGO detectors attained an unprecedented sensitivity, resulting in the first direct detections of gravitational-wave signals produced by stellar-mass binary black hole systems. This paper reports on an all-sky search for gravitational waves (GWs) from merging intermediate mass black hole binaries (IMBHBs). The combined results from two independent search techniques were used in this study: the first employs a matched-filter algorithm that uses a bank of filters covering the GW signal parameter space, while the second is a generic search for GW transients (bursts). No GWs from IMBHBs were detected; therefore, we constrain the rate of several classes of IMBHB mergers. The most stringent limit is obtained for black holes of individual mass 100 M, with spins aligned with the binary orbital angular momentum. For such systems, the merger rate is constrained to be less than 0.93 Gpc-3 yr-1 in comoving units at the 90% confidence level, an improvement of nearly 2 orders of magnitude over previous upper limits. © 2017 American Physical Society
