31 research outputs found

    Naked Singularity Formation In f(R) Gravity

    Full text link
    We study the gravitational collapse of a star with barotropic equation of state p=wρp=w\rho in the context of f(R)f({\mathcal R}) theories of gravity. Utilizing the metric formalism, we rewrite the field equations as those of Brans-Dicke theory with vanishing coupling parameter. By choosing the functionality of Ricci scalar as f(R)=αRmf({\mathcal R})=\alpha{\mathcal R}^{m}, we show that for an appropriate initial value of the energy density, if α\alpha and mm satisfy certain conditions, the resulting singularity would be naked, violating the cosmic censorship conjecture. These conditions are the ratio of the mass function to the area radius of the collapsing ball, negativity of the effective pressure, and the time behavior of the Kretschmann scalar. Also, as long as parameter α\alpha obeys certain conditions, the satisfaction of the weak energy condition is guaranteed by the collapsing configuration.Comment: 15 pages, 4 figures, to appear in GR

    Biogeosciences Perspectives on Integrated, Coordinated, Open, Networked (ICON) Science

    Get PDF
    This article is composed of three independent commentaries about the state of Integrated, Coordinated, Open, Networked (ICON) principles in the American Geophysical Union Biogeosciences section, and discussion on the opportunities and challenges of adopting them. Each commentary focuses on a different topic: (a) Global collaboration, technology transfer, and application (Section 2), (b) Community engagement, community science, education, and stakeholder involvement (Section 3), and (c) Field, experimental, remote sensing, and real-time data research and application (Section 4). We discuss needs and strategies for implementing ICON and outline short- and long-term goals. The inclusion of global data and international community engagement are key to tackling grand challenges in biogeosciences. Although recent technological advances and growing open-access information across the world have enabled global collaborations to some extent, several barriers, ranging from technical to organizational to cultural, have remained in advancing interoperability and tangible scientific progress in biogeosciences. Overcoming these hurdles is necessary to address pressing large-scale research questions and applications in the biogeosciences, where ICON principles are essential. Here, we list several opportunities for ICON, including coordinated experimentation and field observations across global sites, that are ripe for implementation in biogeosciences as a means to scientific advancements and social progress

    Association of a novel mutation in the plasmodium falciparum chloroquine resistance transporter with decreased piperaquine sensitivity

    Get PDF
    Background. Amplified copy number in the plasmepsin II/III genes within Plasmodium falciparum has been associated with decreased sensitivity to piperaquine. To examine this association and test whether additional loci might also contribute, we performed a genome-wide association study of ex vivo P. falciparum susceptibility to piperaquine. Methods. Plasmodium falciparum DNA from 183 samples collected primarily from Cambodia was genotyped at 33 716 genomewide single nucleotide polymorphisms (SNPs). Linear mixed models and random forests were used to estimate associations between parasite genotypes and piperaquine susceptibility. Candidate polymorphisms were evaluated for their association with dihydroartemisinin- piperaquine treatment outcomes in an independent dataset. Results. Single nucleotide polymorphisms on multiple chromosomes were associated with piperaquine 90% inhibitory concentrations (IC90) in a genome-wide analysis. Fine-mapping of genomic regions implicated in genome-wide analyses identified multiple SNPs in linkage disequilibrium with each other that were significantly associated with piperaquine IC90, including a novel mutation within the gene encoding the P. falciparum chloroquine resistance transporter, PfCRT. This mutation (F145I) was associated with dihydroartemisinin-piperaquine treatment failure after adjusting for the presence of amplified plasmepsin II/III, which was also associated with decreased piperaquine sensitivity. Conclusions. Our data suggest that, in addition to plasmepsin II/III copy number, other loci, including pfcrt, may also be involved in piperaquine resistance

    Observations of the Sun at Vacuum-Ultraviolet Wavelengths from Space. Part II: Results and Interpretations

    Full text link

    A genetically modified Plasmodium berghei parasite as a surrogate for whole-sporozoite vaccination against P. vivax malaria

    No full text
    Two malaria parasite species, Plasmodium falciparum (Pf) and P. vivax (Pv) are responsible for most of the disease burden caused by malaria. Vaccine development against this disease has focused mainly on Pf. Whole-sporozoite (WSp) vaccination, targeting pre-erythrocytic (PE) parasite stages, is a promising strategy for immunization against malaria and several PfWSp-based vaccine candidates are currently undergoing clinical evaluation. In contrast, no WSp candidates have been developed for Pv, mainly due to constraints in the production of Pv sporozoites in the laboratory. Recently, we developed a novel approach for WSp vaccination against Pf based on the use of transgenic rodent P. berghei (Pb) sporozoites expressing immunogens of this human-infective parasite. We showed that this platform can be used to deliver PE Pf antigens, eliciting both targeted humoral responses and cross-species cellular immune responses against Pf. Here we explored this WSp platform for the delivery of Pv antigens. As the Pv circumsporozoite protein (CSP) is a leading vaccine candidate antigen, we generated a transgenic Pb parasite, PbviVac, that, in addition to its endogenous PbCSP, expresses PvCSP under the control of a strictly PE promoter. Immunofluorescence microscopy analyses confirmed that both the PbCSP and the PvCSP antigens are expressed in PbviVac sporozoites and liver stages and that PbviVac sporozoite infectivity of hepatic cells is similar to that of its wild-type Pb counterpart. Immunization of mice with PbviVac sporozoites elicits the production of anti-PvCSP antibodies that efficiently recognize and bind to Pv sporozoites. Our results warrant further development and evaluation of PbviVac as a surrogate for WSp vaccination against Pv malaria

    Phenotype-agnostic molecular subtyping of neurodegenerative disorders: the Cincinnati Cohort Biomarker Program (CCBP)

    No full text
    Ongoing biomarker development programs have been designed to identify serologic or imaging signatures of clinico-pathologic entities, assuming distinct biological boundaries between them. Identified putative biomarkers have exhibited large variability and inconsistency between cohorts, and remain inadequate for selecting suitable recipients for potential disease-modifying interventions. We launched the Cincinnati Cohort Biomarker Program (CCBP) as a population-based, phenotype-agnostic longitudinal study. While patients affected by a wide range of neurodegenerative disorders will be deeply phenotyped using clinical, imaging, and mobile health technologies, analyses will not be anchored on phenotypic clusters but on bioassays of to-be-repurposed medications as well as on genomics, transcriptomics, proteomics, metabolomics, epigenomics, microbiomics, and pharmacogenomics analyses blinded to phenotypic data. Unique features of this cohort study include (1) a reverse biology-to-phenotype direction of biomarker development in which clinical, imaging, and mobile health technologies are subordinate to biological signals of interest; (2) hypothesis free, causally- and data driven-based analyses; (3) inclusive recruitment of patients with neurodegenerative disorders beyond clinical criteria-meeting patients with Parkinson's and Alzheimer's diseases, and (4) a large number of longitudinally followed participants. The parallel development of serum bioassays will be aimed at linking biologically suitable subjects to already available drugs with repurposing potential in future proof-of-concept adaptive clinical trials. Although many challenges are anticipated, including the unclear pathogenic relevance of identifiable biological signals and the possibility that some signals of importance may not yet be measurable with current technologies, this cohort study abandons the anchoring role of clinico-pathologic criteria in favor of biomarker-driven disease subtyping to facilitate future biosubtype-specific disease-modifying therapeutic efforts.Analytical BioScience

    Biogeosciences Perspectives on Integrated, Coordinated, Open, Networked (ICON) Science

    No full text
    International audienceThis article is composed of three independent commentaries about the state of Integrated, Coordinated, Open, Networked (ICON) principles in the American Geophysical Union Biogeosciences section, and discussion on the opportunities and challenges of adopting them. Each commentary focuses on a different topic: (a) Global collaboration, technology transfer, and application (Section 2), (b) Community engagement, community science, education, and stakeholder involvement (Section 3), and (c) Field, experimental, remote sensing, and real-time data research and application (Section 4). We discuss needs and strategies for implementing ICON and outline short-and long-term goals. The inclusion of global data and international community engagement are key to tackling grand challenges in biogeosciences. Although recent technological advances and growing open-access information across the world have enabled global collaborations to some extent, several barriers, ranging from technical to organizational to cultural, have remained in advancing interoperability and tangible scientific progress in biogeosciences. Overcoming these hurdles is necessary to address pressing large-scale research questions and applications in the biogeosciences, where ICON principles are essential. Here, we list several opportunities for ICON, including coordinated experimentation and field observations across global sites, that are ripe for implementation in biogeosciences as a means to scientific advancements and social progress. Plain Language Summary Biogeosciences is an interdisciplinary field that requires multiscale global data and concerted international community efforts to tackle grand challenges. However, several technical, institutional, and cultural hurdles have remained as major roadblocks toward scientific progress, hindering seamless global data acquisition and international community engagement. To bring a paradigm shift in biogeosciences, there is a need to implement integrated, coordinated, open, and networked efforts, collectively known as the Integrated, Coordinated, Open, Networked (ICON) principles. In this article, we present three related commentaries about the state of ICON, discuss needs to reduce geographical bias in data for enhancing scientific progress, and identify action items. Action items are primarily people-centric DWIVEDI ET AL
    corecore