181 research outputs found

    Constraining slow-roll inflation with WMAP and 2dF

    Get PDF
    We constrain slow-roll inflationary models using the recent WMAP data combined with data from the VSA, CBI, ACBAR and 2dF experiments. We find the slow-roll parameters to be 0<ϵ1<0.0320 < \epsilon_1 < 0.032 and ϵ2+5.0ϵ1=0.036±0.025\epsilon_2 + 5.0 \epsilon_1 = 0.036 \pm 0.025. For inflation models VϕαV \propto \phi^{\alpha} we find that α<3.9,4.3\alpha< 3.9, 4.3 at the 2σ\sigma and 3σ3\sigma levels, indicating that the λϕ4\lambda\phi^4 model is under very strong pressure from observations. We define a convergence criterion to judge the necessity of introducing further power spectrum parameters such as the spectral index and running of the spectral index. This criterion is typically violated by models with large negative running that fit the data, indicating that the running cannot be reliably measured with present data.Comment: 8 pages RevTeX4 file with six figures incorporate

    Effect of chemical composition on luminescence of thiol-stabilized CdTe nanocrystals

    Get PDF
    Judicious selection of the amount of surfactant during synthesis enables a drastic increase in the photoluminescence efficiency of aqueous CdTe nanocrystals (NCs) stabilized by thioglycolic acid (TGA). Elemental determination of the NCs was undertaken to identify the origin of this effect. The molar ratio of (Te + S) to Cd approached unity when the optimum amount of TGA was used during synthesis, whereas the number of S atoms originating from TGA molecules in one NC (2.6 nm of diameter) remained unchanged at 90 ± 3. This indicates that the core lattice composition at the beginning of synthesis, rather than the surface conditions, affects the photoluminescence efficiency of the NCs even after prolonged refluxing

    The Evolution of Inverse Power Law Quintessence at Low Redshift

    Full text link
    Quintessence models based on a scalar field, phi, with an inverse power law potential display simple tracking behavior at early times, when the quintessence energy density, rho_phi, is sub-dominant. At late times, when rho_phi becomes comparable to the matter density, the evolution of phi diverges from its scaling behavior. We calculate the first order departure of phi from its tracker solution at low redshift. Our results for the evolution of phi, rho_phi, Omega_phi, and w are suprisingly accurate even down to z=0. We find that w and Omega_phi are related linearly to first order. We also derive a semi-analytic expression for w(z) which is accurate to within a few percent. Our analytic techniques are potentially applicable to any quintessence model in which the quintessence component comes to dominate at late times.Comment: 6 pages, 6 figures, new figure added, numerous clarification

    Cosmological parameters from SDSS and WMAP

    Full text link
    We measure cosmological parameters using the three-dimensional power spectrum P(k) from over 200,000 galaxies in the Sloan Digital Sky Survey (SDSS) in combination with WMAP and other data. Our results are consistent with a ``vanilla'' flat adiabatic Lambda-CDM model without tilt (n=1), running tilt, tensor modes or massive neutrinos. Adding SDSS information more than halves the WMAP-only error bars on some parameters, tightening 1 sigma constraints on the Hubble parameter from h~0.74+0.18-0.07 to h~0.70+0.04-0.03, on the matter density from Omega_m~0.25+/-0.10 to Omega_m~0.30+/-0.04 (1 sigma) and on neutrino masses from <11 eV to <0.6 eV (95%). SDSS helps even more when dropping prior assumptions about curvature, neutrinos, tensor modes and the equation of state. Our results are in substantial agreement with the joint analysis of WMAP and the 2dF Galaxy Redshift Survey, which is an impressive consistency check with independent redshift survey data and analysis techniques. In this paper, we place particular emphasis on clarifying the physical origin of the constraints, i.e., what we do and do not know when using different data sets and prior assumptions. For instance, dropping the assumption that space is perfectly flat, the WMAP-only constraint on the measured age of the Universe tightens from t0~16.3+2.3-1.8 Gyr to t0~14.1+1.0-0.9 Gyr by adding SDSS and SN Ia data. Including tensors, running tilt, neutrino mass and equation of state in the list of free parameters, many constraints are still quite weak, but future cosmological measurements from SDSS and other sources should allow these to be substantially tightened.Comment: Minor revisions to match accepted PRD version. SDSS data and ppt figures available at http://www.hep.upenn.edu/~max/sdsspars.htm

    A research and development (R&D) roadmap for broadly protective coronavirus vaccines: A pandemic preparedness strategy

    Get PDF
    Broadly protective coronavirus vaccines are an important tool for protecting against future SARS-CoV-2 variants and could play a critical role in mitigating the impact of future outbreaks or pandemics caused by novel coronaviruses. The Coronavirus Vaccines Research and Development (R&D) Roadmap (CVR) is aimed at promoting the development of such vaccines. The CVR, funded by the Bill & Melinda Gates Foundation and The Rockefeller Foundation, was generated through a collaborative and iterative process, which was led by the Center for Infectious Disease Research and Policy (CIDRAP) at the University of Minnesota and involved 50 international subject matter experts and recognized leaders in the field. This report summarizes the major issues and areas of research outlined in the CVR and identifies high-priority milestones. The CVR covers a 6-year timeframe and is organized into five topic areas: virology, immunology, vaccinology, animal and human infection models, and policy and finance. Included in each topic area are key barriers, gaps, strategic goals, milestones, and additional R&D priorities. The roadmap includes 20 goals and 86 R&D milestones, 26 of which are ranked as high priority. By identifying key issues, and milestones for addressing them, the CVR provides a framework to guide funding and research campaigns that promote the development of broadly protective coronavirus vaccines

    Entropy-corrected new agegraphic dark energy in Horava-Lifshitz cosmology

    Full text link
    We study the entropy-corrected version of the new agegraphic dark energy (NADE) model and dark matter in a spatially non-flat Universe and in the framework of Ho\v{r}ava-Lifshitz cosmology. For the two cases containing noninteracting and interacting entropy-corrected NADE (ECNADE) models, we derive the exact differential equation that determines the evolution of the ECNADE density parameter. Also the deceleration parameter is obtained. Furthermore, using a parametrization of the equation of state parameter of the ECNADE model as ωΛ(z)=ω0+ω1z\omega_{\Lambda}(z)=\omega_0+\omega_1 z, we obtain both ω0\omega_0 and ω1\omega_1. We find that in the presence of interaction, the equation of state parameter ω0\omega_0 of this model can cross the phantom divide line which is compatible with the observation.Comment: 20 pages, 2 figures, to appear in 'Astrophysics and Space Science

    The SPTPoL extended cluster survey

    Get PDF
    We describe the observations and resultant galaxy cluster catalog from the 2770 deg2 SPTpol Extended Cluster Survey (SPT-ECS). Clusters are identified via the Sunyaev-Zel'dovich (SZ) effect and confirmed with a combination of archival and targeted follow-up data, making particular use of data from the Dark Energy Survey (DES). With incomplete follow-up we have confirmed as clusters 244 of 266 candidates at a detection significance ξ ≥ 5 and an additional 204 systems at 4 4 threshold, and 10% of their measured SZ flux. We associate SZ-selected clusters, from both SPT-ECS and the SPT-SZ survey, with clusters from the DES redMaPPer sample, and we find an offset distribution between the SZ center and central galaxy in general agreement with previous work, though with a larger fraction of clusters with significant offsets. Adopting a fixed Planck-like cosmology, we measure the optical richness-SZ mass (l - M) relation and find it to be 28% shallower than that from a weak-lensing analysis of the DES data-a difference significant at the 4σ level-with the relations intersecting at λ = 60. The SPT-ECS cluster sample will be particularly useful for studying the evolution of massive clusters and, in combination with DES lensing observations and the SPT-SZ cluster sample, will be an important component of future cosmological analyses

    Search for Gravitational Waves Associated with Gamma-Ray Bursts Detected by Fermi and Swift during the LIGO-Virgo Run O3b

    Get PDF
    We search for gravitational-wave signals associated with gamma-ray bursts (GRBs) detected by the Fermi and Swift satellites during the second half of the third observing run of Advanced LIGO and Advanced Virgo (2019 November 1 15:00 UTC-2020 March 27 17:00 UTC). We conduct two independent searches: A generic gravitational-wave transients search to analyze 86 GRBs and an analysis to target binary mergers with at least one neutron star as short GRB progenitors for 17 events. We find no significant evidence for gravitational-wave signals associated with any of these GRBs. A weighted binomial test of the combined results finds no evidence for subthreshold gravitational-wave signals associated with this GRB ensemble either. We use several source types and signal morphologies during the searches, resulting in lower bounds on the estimated distance to each GRB. Finally, we constrain the population of low-luminosity short GRBs using results from the first to the third observing runs of Advanced LIGO and Advanced Virgo. The resulting population is in accordance with the local binary neutron star merger rate. © 2022. The Author(s). Published by the American Astronomical Society
    corecore