3,415 research outputs found

    Time-periodic phases in populations of nonlinearly coupled oscillators with bimodal frequency distributions

    Full text link
    The mean field Kuramoto model describing the synchronization of a population of phase oscillators with a bimodal frequency distribution is analyzed (by the method of multiple scales) near regions in its phase diagram corresponding to synchronization to phases with a time periodic order parameter. The richest behavior is found near the tricritical point were the incoherent, stationarily synchronized, ``traveling wave'' and ``standing wave'' phases coexist. The behavior near the tricritical point can be extrapolated to the rest of the phase diagram. Direct Brownian simulation of the model confirms our findings.Comment: Revtex,16 pag.,10 fig., submitted to Physica

    Real space renormalization group approach to the 2d antiferromagnetic Heisenberg model

    Full text link
    The low energy behaviour of the 2d antiferromagnetic Heisenberg model is studied in the sector with total spins S=0,1,2S=0,1,2 by means of a renormalization group procedure, which generates a recursion formula for the interaction matrix ΔS(n+1)\Delta_S^{(n+1)} of 4 neighbouring "nn clusters" of size 2n×2n2^n\times 2^n, n=1,2,3,...n=1,2,3,... from the corresponding quantities ΔS(n)\Delta_S^{(n)}. Conservation of total spin SS is implemented explicitly and plays an important role. It is shown, how the ground state energies ES(n+1)E_S^{(n+1)}, S=0,1,2S=0,1,2 approach each other for increasing nn, i.e. system size. The most relevant couplings in the interaction matrices are generated by the transitions between the ground states S,m;n+1>|S,m;n+1> (m=S,...,Sm=-S,...,S) on an (n+1)(n+1)-cluster of size 2n+1×2n+12^{n+1}\times 2^{n+1}, mediated by the staggered spin operator SqS_q^*Comment: 18 pages, 8 figures, RevTe

    The History of Galaxy Formation in Groups: An Observational Perspective

    Get PDF
    We present a pedagogical review on the formation and evolution of galaxies in groups, utilizing observational information from the Local Group to galaxies at z~6. The majority of galaxies in the nearby universe are found in groups, and galaxies at all redshifts up to z~6 tend to cluster on the scale of nearby groups (~1 Mpc). This suggests that the group environment may play a role in the formation of most galaxies. The Local Group, and other nearby groups, display a diversity in star formation and morphological properties that puts limits on how, and when, galaxies in groups formed. Effects that depend on an intragroup medium, such as ram-pressure and strangulation, are likely not major mechanisms driving group galaxy evolution. Simple dynamical friction arguments however show that galaxy mergers should be common, and a dominant process for driving evolution. While mergers between L_* galaxies are observed to be rare at z < 1, they are much more common at earlier times. This is due to the increased density of the universe, and to the fact that high mass galaxies are highly clustered on the scale of groups. We furthermore discus why the local number density environment of galaxies strongly correlates with galaxy properties, and why the group environment may be the preferred method for establishing the relationship between properties of galaxies and their local density.Comment: Invited review, 16 pages, to be published in ESO Astrophysics Symposia: "Groups of Galaxies in the Nearby Universe", eds. I. Saviane, V. Ivanov, J. Borissov

    On Relativistic Material Reference Systems

    Get PDF
    This work closes certain gaps in the literature on material reference systems in general relativity. It is shown that perfect fluids are a special case of DeWitt's relativistic elastic media and that the velocity--potential formalism for perfect fluids can be interpreted as describing a perfect fluid coupled to a fleet of clocks. A Hamiltonian analysis of the elastic media with clocks is carried out and the constraints that arise when the system is coupled to gravity are studied. When the Hamiltonian constraint is resolved with respect to the clock momentum, the resulting true Hamiltonian is found to be a functional only of the gravitational variables. The true Hamiltonian is explicitly displayed when the medium is dust, and is shown to depend on the detailed construction of the clocks.Comment: 18 pages, ReVTe

    Multi-neutron transfer coupling in sub-barrier 32S+90,96Zr fusion reactions

    Full text link
    The role of neutron transfers is investigated in the fusion process below the Coulomb barrier by analyzing 32S+90Zr and 32S+96Zr as benchmark reactions. A full coupled-channel calculation of the fusion excitation functions has been performed for both systems by using multi-neutron transfer coupling for the more neutron-rich reaction. The enhancement of fusion cross sections for 32S+96Zr is well reproduced at sub-barrier energies by NTFus code calculations including the coupling of the neutron-transfer channels following the Zagrebaev semiclassical model. We found similar effects for 40Ca+90Zr and 40Ca+96Zr fusion excitation functions.Comment: Minor corrections, 11 pages, 4 figures, Fusion11 Conference, Saint Malo, France, 2-6 mai 201

    Can We Improve the Preprocessing of Photospheric Vector Magnetograms by the Inclusion of Chromospheric Observations?

    Get PDF
    The solar magnetic field is key to understanding the physical processes in the solar atmosphere. Nonlinear force-free codes have been shown to be useful in extrapolating the coronal field upward from underlying vector boundary data. However, we can only measure the magnetic field vector routinely with high accuracy in the photosphere, and unfortunately these data do not fulfill the force-free condition. We must therefore apply some transformations to these data before nonlinear force-free extrapolation codes can be self-consistently applied. To this end, we have developed a minimization procedure that yields a more chromosphere-like field, using the measured photospheric field vectors as input. The procedure includes force-free consistency integrals, spatial smoothing, and -- newly included in the version presented here -- an improved match to the field direction as inferred from fibrils as can be observed in, e.g., chromospheric Hα\alpha images. We test the procedure using a model active-region field that included buoyancy forces at the photospheric level. The proposed preprocessing method allows us to approximate the chromospheric vector field to within a few degrees and the free energy in the coronal field to within one percent.Comment: 22 pages, 6 Figur

    On the effects of (partial) quenching on penguin contributions to K-> pi pi

    Get PDF
    Recently, we pointed out that chiral transformation properties of strong penguin operators change in the transition from unquenched to (partially) quenched QCD. As a consequence, new penguin-like operators appear in the (partially) quenched theory, along with new low-energy constants, which should be interpreted as a quenching artifact. Here, we extend the analysis to the contribution of the new low-energy constants to the K^0 -> pi^+ pi^- amplitude, at leading order in chiral perturbation theory, and for arbitrary (momentum non-conserving) kinematics. Using these results, we provide a detailed discussion of the intrinsic systematic error due to this (partial) quenching artifact. We also give a simple recipe for the determination of the leading-order low-energy constant parameterizing the new operators in the case of strong LRLR penguins.Comment: 17 pages, 1 figure, minor correction

    The temperature-flow renormalization group and the competition between superconductivity and ferromagnetism

    Full text link
    We derive a differential equation for the one-particle-irreducible vertex functions of interacting fermions as a function of the temperature. Formally, these equations correspond to a Wilsonian renormalization group scheme which uses the temperature as an explicit scale parameter. Our novel method allows us to analyze the competition between superconducting and various magnetic Fermi surface instabilities in the one-loop approximation. In particular this includes ferromagnetic fluctuations, which are difficult to treat on an equal footing in conventional Wilsonian momentum space techniques. Applying the scheme to the two-dimensional t-t' Hubbard model we investigate the RG flow of the interactions at the van Hove filling with varying next-nearest neighbor hopping t'. Starting at t'=0 we describe the evolution of the flow to strong coupling from an antiferromagnetic nesting regime over a d-wave regime at moderate t' to a ferromagnetic region at larger absolute values of t'. Upon increasing the particle density in the latter regime the ferromagnetic tendencies are cut off and the leading instability occurs in the triplet superconducting pairing channel.Comment: 18 pages, 11 figure

    Properties of the Bose glass phase in irradiated superconductors near the matching field

    Full text link
    Structural and transport properties of interacting localized flux lines in the Bose glass phase of irradiated superconductors are studied by means of Monte Carlo simulations near the matching field B_Phi, where the densities of vortices and columnar defects are equal. For a completely random columnar pin distribution in the xy-plane transverse to the magnetic field, our results show that the repulsive vortex interactions destroy the Mott insulator phase which was predicted to occur at B = B_Phi. On the other hand, for ratios of the penetration depth to average defect distance lambda/d <= 1, characteristic remnants of the Mott insulator singularities remain visible in experimentally accessible quantities as the magnetization, the bulk modulus, and the magnetization relaxation, when B is varied near B_Phi. For spatially more regular disorder, e.g., a nearly triangular defect distribution, we find that the Mott insulator phase can survive up to considerably large interaction range \lambda/d, and may thus be observable in experiments.Comment: RevTex, 17 pages, eps files for 12 figures include

    Generalized Quantum Theory of Recollapsing Homogeneous Cosmologies

    Full text link
    A sum-over-histories generalized quantum theory is developed for homogeneous minisuperspace type A Bianchi cosmological models, focussing on the particular example of the classically recollapsing Bianchi IX universe. The decoherence functional for such universes is exhibited. We show how the probabilities of decoherent sets of alternative, coarse-grained histories of these model universes can be calculated. We consider in particular the probabilities for classical evolution defined by a suitable coarse-graining. For a restricted class of initial conditions and coarse grainings we exhibit the approximate decoherence of alternative histories in which the universe behaves classically and those in which it does not. For these situations we show that the probability is near unity for the universe to recontract classically if it expands classically. We also determine the relative probabilities of quasi-classical trajectories for initial states of WKB form, recovering for such states a precise form of the familiar heuristic "J d\Sigma" rule of quantum cosmology, as well as a generalization of this rule to generic initial states.Comment: 41 pages, 4 eps figures, revtex 4. Modest revisions throughout. Physics unchanged. To appear in Phys. Rev.
    corecore