3,415 research outputs found
Time-periodic phases in populations of nonlinearly coupled oscillators with bimodal frequency distributions
The mean field Kuramoto model describing the synchronization of a population
of phase oscillators with a bimodal frequency distribution is analyzed (by the
method of multiple scales) near regions in its phase diagram corresponding to
synchronization to phases with a time periodic order parameter. The richest
behavior is found near the tricritical point were the incoherent, stationarily
synchronized, ``traveling wave'' and ``standing wave'' phases coexist. The
behavior near the tricritical point can be extrapolated to the rest of the
phase diagram. Direct Brownian simulation of the model confirms our findings.Comment: Revtex,16 pag.,10 fig., submitted to Physica
Real space renormalization group approach to the 2d antiferromagnetic Heisenberg model
The low energy behaviour of the 2d antiferromagnetic Heisenberg model is
studied in the sector with total spins by means of a renormalization
group procedure, which generates a recursion formula for the interaction matrix
of 4 neighbouring " clusters" of size ,
from the corresponding quantities . Conservation
of total spin is implemented explicitly and plays an important role. It is
shown, how the ground state energies , approach each
other for increasing , i.e. system size. The most relevant couplings in the
interaction matrices are generated by the transitions
between the ground states
() on an -cluster of size , mediated
by the staggered spin operator Comment: 18 pages, 8 figures, RevTe
The History of Galaxy Formation in Groups: An Observational Perspective
We present a pedagogical review on the formation and evolution of galaxies in
groups, utilizing observational information from the Local Group to galaxies at
z~6. The majority of galaxies in the nearby universe are found in groups, and
galaxies at all redshifts up to z~6 tend to cluster on the scale of nearby
groups (~1 Mpc). This suggests that the group environment may play a role in
the formation of most galaxies. The Local Group, and other nearby groups,
display a diversity in star formation and morphological properties that puts
limits on how, and when, galaxies in groups formed. Effects that depend on an
intragroup medium, such as ram-pressure and strangulation, are likely not major
mechanisms driving group galaxy evolution. Simple dynamical friction arguments
however show that galaxy mergers should be common, and a dominant process for
driving evolution. While mergers between L_* galaxies are observed to be rare
at z < 1, they are much more common at earlier times. This is due to the
increased density of the universe, and to the fact that high mass galaxies are
highly clustered on the scale of groups. We furthermore discus why the local
number density environment of galaxies strongly correlates with galaxy
properties, and why the group environment may be the preferred method for
establishing the relationship between properties of galaxies and their local
density.Comment: Invited review, 16 pages, to be published in ESO Astrophysics
Symposia: "Groups of Galaxies in the Nearby Universe", eds. I. Saviane, V.
Ivanov, J. Borissov
On Relativistic Material Reference Systems
This work closes certain gaps in the literature on material reference systems
in general relativity. It is shown that perfect fluids are a special case of
DeWitt's relativistic elastic media and that the velocity--potential formalism
for perfect fluids can be interpreted as describing a perfect fluid coupled to
a fleet of clocks. A Hamiltonian analysis of the elastic media with clocks is
carried out and the constraints that arise when the system is coupled to
gravity are studied. When the Hamiltonian constraint is resolved with respect
to the clock momentum, the resulting true Hamiltonian is found to be a
functional only of the gravitational variables. The true Hamiltonian is
explicitly displayed when the medium is dust, and is shown to depend on the
detailed construction of the clocks.Comment: 18 pages, ReVTe
Multi-neutron transfer coupling in sub-barrier 32S+90,96Zr fusion reactions
The role of neutron transfers is investigated in the fusion process below the
Coulomb barrier by analyzing 32S+90Zr and 32S+96Zr as benchmark reactions. A
full coupled-channel calculation of the fusion excitation functions has been
performed for both systems by using multi-neutron transfer coupling for the
more neutron-rich reaction. The enhancement of fusion cross sections for
32S+96Zr is well reproduced at sub-barrier energies by NTFus code calculations
including the coupling of the neutron-transfer channels following the Zagrebaev
semiclassical model. We found similar effects for 40Ca+90Zr and 40Ca+96Zr
fusion excitation functions.Comment: Minor corrections, 11 pages, 4 figures, Fusion11 Conference, Saint
Malo, France, 2-6 mai 201
Can We Improve the Preprocessing of Photospheric Vector Magnetograms by the Inclusion of Chromospheric Observations?
The solar magnetic field is key to understanding the physical processes in
the solar atmosphere. Nonlinear force-free codes have been shown to be useful
in extrapolating the coronal field upward from underlying vector boundary data.
However, we can only measure the magnetic field vector routinely with high
accuracy in the photosphere, and unfortunately these data do not fulfill the
force-free condition. We must therefore apply some transformations to these
data before nonlinear force-free extrapolation codes can be self-consistently
applied. To this end, we have developed a minimization procedure that yields a
more chromosphere-like field, using the measured photospheric field vectors as
input. The procedure includes force-free consistency integrals, spatial
smoothing, and -- newly included in the version presented here -- an improved
match to the field direction as inferred from fibrils as can be observed in,
e.g., chromospheric H images. We test the procedure using a model
active-region field that included buoyancy forces at the photospheric level.
The proposed preprocessing method allows us to approximate the chromospheric
vector field to within a few degrees and the free energy in the coronal field
to within one percent.Comment: 22 pages, 6 Figur
On the effects of (partial) quenching on penguin contributions to K-> pi pi
Recently, we pointed out that chiral transformation properties of strong
penguin operators change in the transition from unquenched to (partially)
quenched QCD. As a consequence, new penguin-like operators appear in the
(partially) quenched theory, along with new low-energy constants, which should
be interpreted as a quenching artifact. Here, we extend the analysis to the
contribution of the new low-energy constants to the K^0 -> pi^+ pi^- amplitude,
at leading order in chiral perturbation theory, and for arbitrary (momentum
non-conserving) kinematics. Using these results, we provide a detailed
discussion of the intrinsic systematic error due to this (partial) quenching
artifact. We also give a simple recipe for the determination of the
leading-order low-energy constant parameterizing the new operators in the case
of strong penguins.Comment: 17 pages, 1 figure, minor correction
The temperature-flow renormalization group and the competition between superconductivity and ferromagnetism
We derive a differential equation for the one-particle-irreducible vertex
functions of interacting fermions as a function of the temperature. Formally,
these equations correspond to a Wilsonian renormalization group scheme which
uses the temperature as an explicit scale parameter. Our novel method allows us
to analyze the competition between superconducting and various magnetic Fermi
surface instabilities in the one-loop approximation. In particular this
includes ferromagnetic fluctuations, which are difficult to treat on an equal
footing in conventional Wilsonian momentum space techniques. Applying the
scheme to the two-dimensional t-t' Hubbard model we investigate the RG flow of
the interactions at the van Hove filling with varying next-nearest neighbor
hopping t'. Starting at t'=0 we describe the evolution of the flow to strong
coupling from an antiferromagnetic nesting regime over a d-wave regime at
moderate t' to a ferromagnetic region at larger absolute values of t'. Upon
increasing the particle density in the latter regime the ferromagnetic
tendencies are cut off and the leading instability occurs in the triplet
superconducting pairing channel.Comment: 18 pages, 11 figure
Properties of the Bose glass phase in irradiated superconductors near the matching field
Structural and transport properties of interacting localized flux lines in
the Bose glass phase of irradiated superconductors are studied by means of
Monte Carlo simulations near the matching field B_Phi, where the densities of
vortices and columnar defects are equal. For a completely random columnar pin
distribution in the xy-plane transverse to the magnetic field, our results show
that the repulsive vortex interactions destroy the Mott insulator phase which
was predicted to occur at B = B_Phi. On the other hand, for ratios of the
penetration depth to average defect distance lambda/d <= 1, characteristic
remnants of the Mott insulator singularities remain visible in experimentally
accessible quantities as the magnetization, the bulk modulus, and the
magnetization relaxation, when B is varied near B_Phi. For spatially more
regular disorder, e.g., a nearly triangular defect distribution, we find that
the Mott insulator phase can survive up to considerably large interaction range
\lambda/d, and may thus be observable in experiments.Comment: RevTex, 17 pages, eps files for 12 figures include
Generalized Quantum Theory of Recollapsing Homogeneous Cosmologies
A sum-over-histories generalized quantum theory is developed for homogeneous
minisuperspace type A Bianchi cosmological models, focussing on the particular
example of the classically recollapsing Bianchi IX universe. The decoherence
functional for such universes is exhibited. We show how the probabilities of
decoherent sets of alternative, coarse-grained histories of these model
universes can be calculated. We consider in particular the probabilities for
classical evolution defined by a suitable coarse-graining. For a restricted
class of initial conditions and coarse grainings we exhibit the approximate
decoherence of alternative histories in which the universe behaves classically
and those in which it does not. For these situations we show that the
probability is near unity for the universe to recontract classically if it
expands classically. We also determine the relative probabilities of
quasi-classical trajectories for initial states of WKB form, recovering for
such states a precise form of the familiar heuristic "J d\Sigma" rule of
quantum cosmology, as well as a generalization of this rule to generic initial
states.Comment: 41 pages, 4 eps figures, revtex 4. Modest revisions throughout.
Physics unchanged. To appear in Phys. Rev.
- …
